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1. What i1s Ramsey's Theorem

* Definition: the Ramsey number A(s, t)is the number of vertices In
the smallest complete graph which, when 2-colored red and blue,
must contain a red K sor a blue K ¢, where we denote the
complete graph on n vertices by K n.

Ramsey Theorem . For any two natural numbers, s and t, there exists
a natural number, R(s,t) = n, such that any 2-colored complete graph of order
at least n, colored red and blue, must contain a monochromatic red K, or blue

K.



1. Ramsey Theorem R(3,3)=06

* For any complete graph with 6 vertices, use red and blue to color
Its edges In arbitrary way, then, there must be a red K 3 or a blue
K 3 The 6 Is the smallest number with this property.



1. General Ramsey's Theorem:

* For any positive integers st >1, R(st) <+ ®,

* R(44)=18,
* 43<=R(5,5)<=48, 102<=R(6,6) <=165.

Table 1 The 9 known non-trivial Ramsey numbers

r 3 3 3 3 3 3 3 4 4
s 3 4 5 6 7 ] 9 4 5
R(r,s) 6 9 14 18 23 28 36 18 25




2. A hand proof of Ramsey Theorem

* For the original Ramsey Theorem £(3,3)=6:

Proof. First, we show that R(3,3) > 5 (or R(3,3) > 6) by exhibiting a complete
graph on 5 vertices that does not contain a red K3 or blue Kj:




We now show that Ky must always contain a red K3 or blue K3. Recall that
this is equivalent to the statement of the Friends and Enemies Puzzle.

First, pick any vertex v and consider the edges incident to it:

Since there are 5 edges and only 2 possible colors for each edge, by the pigeonhole
principle. at least 3 of these edges must have the same color. Without loss of
generality, assume there are 3 blue edges connecting v to 3 other vertices.




Consider the K3 subgraph generated by the 3 adjacent vertices. If all edges in
the subgraph are red, then we have found a red Kj.

Otherwise, at least one of the edges must be blue. This edge completes a blue
K3 with the original set of 3 blue edges incident to v.

Therefore, R(3,3) =6. U




3. How to prove Ramsey's Theorem by symbolic
computation?

* Step 1: Use 0,1 to represent the edge color red and blue. If edge
between the vertex $i$ and the vertex $j$ is red, then $x {ij}=08%, if
it is blue, then $x {ij}=1%.

x12=0 x13=1 xild=1 x15=0
x23=0 x24=1 x25=]
x34=0 x35=1

x45=0




In this K7,
9 edges are blue, and 712 edges are
red.

xX13, x16, x17, x23, x25, x26,
X34, x45, x56 =1

x12 x14, x15, x24, x27, x35, x36,
X37, x46, x47, x57, x67 =()



3. How to prove Ramsey's Theorem by
symbolic computation?

* Step 2: Assume that a complete graph K n1s colored by 0 (red)
and 1 (blue). x {1} takes O If the edge between |, | Is red, and x {1/}
takes 1 if the edge between / /is blue. Define two functions /and
Jas follows:

J = H f3(ij, Tjk, Tik), 1 = H 93(Tij, Tjk, Tik)-
1<i<j<k<n 1<i<j<k<n
where

filz1, 20y - - - s Bple—1)y2) =21+ B2+ Zpir—1)/2;

gS(zla % P 23(3—1)/2) =1 — A zs(s—l)/Q'}



3. How to prove Ramsey's Theorem by
symbolic computation?

e Step 3: Compute the polynomial J x / using the simplify rules:

9 3 4 2 3 4
{512 = X112, L9 = 12, L19 = L12; -+ -y Ly5 = T45, Ly5 = T45,Lys — 1745}?

* |If theresultis Jx /= 0(zero polynomial), we claim R(3,3)<=n;
and If the result i1s not a zero polynomial, we claim R(3,3)>n.



3. How to prove Ramsey's Theorem by
symbolic computation?

* For example, for the complete graph K_5, we have:

I =1 —219213%14 — T123T13L15 — *** — L34L35T45

+ - -+ 412213 - - - T15T23 - - - L5,

J = 3(T12713%23 - Ty5 + T12T14T24 - T35 + -+ + T34X35L45 - T12)

+ - -+ 6012213 - - - X15%23 - - - T45.



* The multiplication J x [

J X1 = 32212213224235245+32212214%23X35% 45+ - -—384T 12213 + - - 15223 - - T45.
This polynomial contains 218 monomials, and

J 5 d0,1,1,0.0,1, 1,9, 1, 0) =32,
hence, R(3,3)>3.



3. How to prove Ramsey's Theorem by
symbolic computation?

* For the complete graph K_6, we have
* Jis a polynomial with 5,789 monomials,
* | Is a polynomial with 5,395 monomials, (see next page)

* And J x | = zero polynomial after simplification.



J(E19, %13, - «- ;B5g) = H f3(Zij, Tik, Tk

1<i<j<k<6
=9 ) Il =ue- vz + -+ 26250768 || =i,
1<i<j<k<6 1=i1<lz<6 1L¢<3<6
li,lo5%,5,k
1(3712:3313, ‘e :3356) = H 93($ijaxikaxjk:)

1<i<j<k<6

=1 = E TijTikTjk — - — 3 H Tij,

1<i<j<k<6 1<i<j<6

here the reduced form of J has 5, 789 monomials, the highest degree of which is
15, and the lowest degree is 6, and the reduced form of I has 5,395 monomials,
the highest degree of which is also 15.

to expand the product H = J x I,

using «3; = x5 (1 <4 < j < 10) to simplify the result, we obtain H = 0 finally,
which implies that R(3,3) < 6.



4. Prove R(3,4)=9 via symbolic computation

* Theoretically, the same method can be used If there Is no
Intermediate computation explosion.

* For the complete graph K_9, the number of variables x {ij} Is
9x8/2=36. Direction computation of J,| polynomials is too
complicated.

* Method:



4. Prove R(3,4)=9 via symbolic computation

In the first step, we write the chromatic variable V' in the following form:

12,
L13, 223,

L14,T24, T34,

L18; L28y L3Ry -« - 3 LT,
X19,X29,X39,...,L79, 89
and rearrange the vertices 1,2,...,8 so that
Big =+~ =&ke = 0; Bpri9 ==, 8= 1, (0L k <i8)

then divide the original problem for computing H = J x I into the following 9
sub-problems (Py) (k=0,1,...,8):



4. Prove R(3,4)=9 via symbolic computation

Sub-Problem (Py) : H =mult(J,I) where
J and T are defined in (23), and
B =01l LjL k) Ru=1{k+1<7<8).
In each task (Px), we compute the multiplication of some factors of J, I
and search certain complete subgraph K = {i1,%9,...,%,}, formed by p vertices

1<y << <K ’Z:p < 9 of K that satisfies Hx = J‘K R .1y =0, here, Jr Ik
are defined as follows:

JK — H Fi,j,k; IK = H Gz’,j,k‘,l.

1<i<j<k<9 1<i<j<k<l<9
i,j,keK i,j, k€K

here

F’i,j,k = f3($’ij7$jkaxik‘) = Zjj + Tjr + Tik,

Gi,j,k,l = 94(33@'3': Liky Lily Ljky Tyl iEk,z) =1- Lij Tik T4l Ljk T4l Tkl-



Clearly, if K is any complete subgraph of Kg, then Hg is a divisor of H, and
therefore, Hx = 0 implies that K = 0. Thus, the key to solve each sub-problem
is to find subgraph K with relatively small number of vertices so that Hx = 0.

Theorem 6. (1) When k= 0,1,2, the subgraph K = {3,4,5,6,7,8,9} satisfies
HK7 = 0;
(2) When k =4,5,6,7,8, the subgraph K = {1,2,3,4,9} satisfies Hx. = 0;
(3) When k = 3, the following statement is true:

not (HK4(1,2,3,9) = 0) /A not (HK6(4,5,6,7,8,9) = 0) — HK8(1,2,3,4,5,6,7,8) = .

Key 1dea of the proof:

The three cases mentioned in Theorem 6 are found by computational experiment.



5. Discussion

(1) An improvement of Ramsey’s Theorem:

Theorem 5. R»(3,3) = 6, i.e., for any 2-coloring chromatic scheme

V: (551233313,---,x16,$23,---,3326,1734,.--3---,1’56)

of the complete graph Kg, there exist 1 <1< j<k<6,1<i <j <k'"<6 so
that both (i,7,k) and (i', 7', k") are colored by single color.



5. Discussion

* (2) for three colors, we may use 0O, -1, 1 to represent the colors,
and the following characteristic polynomials:

fg(zl,ZQ,...,zk):zf—l—z%—l—...—i—zg,
fi(z1,29,...,2,) = 21+ 22+ ...+ 2k — k,
f—l(zlazﬁu“'jzk):Z1+22+---+Zk+ka

* to represent that a complete subgraph of Kn Is colored by one
special color.



5. Discussion

* Can quantum computers be use to do computation for simplify
the polynomials generated in the proof of Ramsey’s theorem?

* (This Is the end page)



* Thank you very much!

* The authors are very sorry that they are not able to
join the conterence in Belgrade Serbia.

* Zhenbing Zeng at Shanghai, 2023-09-18



