
Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Automation of Triangle Ruler-and-Compass
Constructions Using Constraint Solvers

Milan Banković1

1Faculty of Mathematics, University of Belgrade, Serbia

September 21, 2023.
ADG 2023, Belgrade, Serbia



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Introduction

Overview

1 Introduction

2 Constraint Solving

3 Model Description

4 Evaluation

5 Conclusions



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Introduction

Introduction

About construction problems

One of the oldest kinds of problems in geometry

Given some elements of a figure, find a sequence of steps to
construct the remaining elements
Tools available: a ruler (straightedge) and a compass

Solving by hand – interesting to geometricians

Automated solving – a challenge to computer scientists



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Introduction

Introduction

Two approaches to automated solving

Implementing a custom search algorithm in some
programming language

required geometric knowledge must be compiled into it
might require a lot of effort

Using existing artificial intelligence tools that are good in
search in general

we may focus on modeling the geometric knowledge, and leave
the search to the tool
we can search for best solutions (e.g. shortest), using tools
that support optimization



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Introduction

Introduction

What are we trying to do?

Automated solving using off-the-shelf finite domain constraint
solvers

great in solving search and optimization problems

Modeling based on automated planning approach

the solution is viewed as a sequence of actions producing a
state satisfying a given goal

Evaluate the approach on 74 solvable problems from
Wernick’s set

constructing triangles from three given points

Compare the approach with state-of-the-art tools

ArgoTriCS1 dedicated triangle construction solver

1Vesna Marinković. ArgoTriCS – automated triangle construction solver.
Journal of Experimental & Theoretical Artificial Intelligence. 2017.



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Constraint Solving

Overview

1 Introduction

2 Constraint Solving

3 Model Description

4 Evaluation

5 Conclusions



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Constraint Solving

Constraint Solving

Constraint Satisfaction Problem (CSP)

A Constraint satisfaction problem (CSP) consists of:

a finite set of variables {x1, . . . , xn} taking values from their
finite domains (denoted by D(xi ))

a finite set of constraints {C1,C2, . . . ,Cm} – relations over
subsets of the problem’s variables

A solution of the CSP is an assignment x1 = d1, . . . , xn = dn such
that di ∈ D(xi ) and all the constraints are satisfied.



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Constraint Solving

Constraint Solving

Constrained Optimization Problem (COP)

In addition, we have a function f : D(x1)× . . .× D(xn) → R, and
we are looking for a solution that minimizes or maximizes f .



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Constraint Solving

Constraint Solving

Solving CSPs and COPs

CSPs and COPs are NP-hard in general

Solved by combination of search and constraint propagation

Constraint solvers – tools for solving CSPs and COPs

Constraint modeling: the task of representing the real-world
problem as a CSP or a COP

MiniZinc – a modeling language of our choice



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Overview

1 Introduction

2 Constraint Solving

3 Model Description

4 Evaluation

5 Conclusions



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Model Description

Automated planning

For modeling, we use the approach based on automated planning:

state is represented by a set of variables

initial state given in advance

a finite set of operators (or actions), changing the state

each operator may have a precondition for its application

a goal: the condition that should be satisfied in the final state

The objective is to find a plan:

a finite sequence of operators applicable to the initial state,
such that the obtained final state satisfies the given goal



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Model Description

Constructions as planning problems

states ⇔ sets of constructed objects (points, lines, angles,. . . )

operators ⇔ construction steps

the goal: the triangle vertices A,B and C are in the final state



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Model Description

Encoding objects

We use MiniZinc enumeration types:

enum Point = { A, B, C, O, I, G, H, Ma, Mb, Mc, ... };

enum Line = {a, b, c, ma, mb, mc, sa, sb, sc, ha, hb, hc,...};

enum Circle = { kO, kI, kMa, kMb, kMc, kNa, kNb, kNc,...};

enum Angle = { Alpha, Beta, Gamma,...};

Important!

Only the objects listed as enumerators can be constructed.



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Model Description

Encoding relations

We use MiniZinc model parameters to statically encode the
following geometric knowledge:

incidence relations (points belonging to lines and circles)

relations between lines (parallel and perpendicular lines)

circles information (circle centers, diameters and tangents)

vector ratios, angles information, harmonic conjugates, loci of
points . . .

MiniZinc data structures used

Arrays of sets, multidimensional arrays, arrays of tuples. . .



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Model Description

Encoding the states (for a fixed plan length n)

The states S0, . . . ,Sn are encoded using the arrays of set variables:

known points[i ]

known lines[i ]

known angles[i ]

known circles[i ]

representing the sets of points (lines, angles, circles) belonging to
the ith state (i.e. constructed up to the ith step), for each
i ∈ {0, 1, . . . , n}.



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Model Description

Encoding the plan

To encode the plan, for each step, we must specify the following:

the type of operator (i.e. construction) used in this step

constructing the line through two given points
constructing the point that is the intersection of two given lines
constructing the circle centered in one given point and
containing another given point, . . .

the objects used in the construction step (used for the
construction or being constructed)

for instance, if we construct the line through two given points,
we must fix:

which two points are used
which line is being constructed (the one passing through these
points)



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Model Description

Encoding the plan (2)

We use the enumeration type:

enum ConsType = { LineThrough, LineIntersect, KnownRatio,

PerpendicularLine, ParallelLine, CircleCenterPoint, CircleCenterTangent,

TangentCirclePoint, TangentsCirclePoint,

LineCircleIntersects, ...

};

to enumerate all supported types of construction steps.

The array of variables construct[i ] denotes the type of
construction applied in ith step (i ∈ {1, 2, . . . , n})



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Model Description

Encoding the plan (3)

We define the arrays of variables:

points[i ][j ], lines[i ][j ], circles[i ][j ], angles[i ][j ]

denoting the objects used in ith step.

for instance, in the LineThrough construction:

points[i ][1] and points[i ][2] denote the used points
lines[i ][1] denotes the constructed line



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Model Description

Encoding the state transitions

Connecting the state variables in successive states:

constraint forall(i in 1..n)

(

construct[i] = LineIntersect ->

% Precondition

(lines[i,1] in known_lines[i-1] /\

lines[i,2] in known_lines[i-1] /\

lines[i,1] != lines[i,2] /\

not (lines[i,1] in parallel_lines[lines[i,2]]) /\

lines[i,1] in inc_lines[points[i,1]] /\

lines[i,2] in inc_lines[points[i,1]] /\

not (points[i,1] in known_points[i-1]) /\

% Effects

known_points[i] = known_points[i-1] union { points[i,1] } /\

known_lines[i] = known_lines[i-1] /\

known_circles[i] = known_circles[i-1] /\

known_angles[i] = known_angles[i - 1]

)

);



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Model Description

Model Description

Encoding the goal

We require that the triangle vertices are constructed in the final
state:

{ A, B, C } subset known_points[n];



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Evaluation

Overview

1 Introduction

2 Constraint Solving

3 Model Description

4 Evaluation

5 Conclusions



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Evaluation

Evaluation

Evaluation setups

To construct a plan of a minimal length, we try three different
setups:

linear setup: successively solve CSPs for plans of length
n = 1, 2, 3, . . . ,maxLength, until a satisfiable CSP is
encountered

minimization setup: let n be a variable in domain
{1, . . . ,maxLength} and solve the corresponding COP that
minimizes n

incremental setup: successively solve COPs (minimizing n) for
incremental domain ranges for n (with step k)

n ∈ {1, . . . , k},{k + 1, . . . , 2k},{2k + 1, . . . , 3k},. . . ,
< maxLength



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Evaluation

Evaluation

Comparison to ArgoTriCS

ArgoTriCS2 – a state-of-the-art dedicated triangle construction
solver (developed in Prolog).

2Vesna Marinković. ArgoTriCS – automated triangle construction solver.
Journal of Experimental & Theoretical Artificial Intelligence. 2017.



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Evaluation

Evaluation

Setup # solved Avg. time Median time Avg. time on solved Avg. length
linear 63 97.9 22.0 58.5 6.3

minimization 63 43.8 10.8 29.7 6.3
incremental (k = 3) 63 66.1 12.0 39.9 6.3

ArgoTriCS 65 54.5 21.6 54.4 7.5

Overall results on 74 Wernick’s problems for different setups, compared to ArgoTriCS.

Times are given in seconds



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Conclusions

Overview

1 Introduction

2 Constraint Solving

3 Model Description

4 Evaluation

5 Conclusions



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Conclusions

Conclusions

Advantages of our approach

Comparable to state-of-the-art tools

Much less effort to implement

Finds plans of minimal lengths

Easy to extend



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Conclusions

Conclusions

Thank you for your attention!

Questions?


	Introduction
	Constraint Solving
	Model Description
	Evaluation
	Conclusions

