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Abstract

We give an example of automated geometry reasoning
for an imaginary classroom project by using the free software
package GeoGebra Discovery.

The project is motivated by a publicly available toy,
a rocking camel, installed at a medical center in Upper Austria.
We explain how the process of

a false conjecture,

experimenting,

modeling,

a precise mathematical setup,

and then a proof by automated reasoning

could help extend mathematical knowledge at secondary school
level and above.
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Movement of the hump of the camel
Video recordings → static images → conjecture
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Erhart, Käferböck, Kovács and Zeintl The locus story of a rocking camel. . . in Freistadt 4/10

https://www.geogebra.org/m/c93pegab
https://matek.hu/zoltan/camel.php


Movement of the hump of the camel
Computing the locus equation
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Movement of the hump of the camel
A proof via elimination (using algebraic geometry, black box)

1 A = (0, 0), B = (15, 0), AE = AH = 5.5, EH = 12.

2 E = (a, b), a2 + b2 = 5.52.

3 H = (c , d), (c − 15)2 + d2 = 5.52.

4 (a− c)2 + (b − d)2 = 122.

5 M = (x , y) . . .

6 ⟨a2 + b2 − 5.52, (c − 15)2 + d2 − 5.52,
(a− c)2 + (b − d)2 − 122, . . .⟩ ∩Q[x , y ] = . . .
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A possible approach as a STEM/STEAM project

1 Play with the toy, try making a conjecture.

2 Make an exact measurement of the toy and its parts.

3 Model the toy in GeoGebra
and trace the movement of the hump.

4 Make a second conjecture. (It’s an ellipse. . .?)

5 Show the locus of the trace points. (No, it’s not an ellipse!)

6 Make a new conjecture. (It looks like an 8-form,
but is there an equation to describe it?)

7 Compute the mathematical equation of the locus.
(Both with LocusEquation and elimination via CAS.
Order can be a didactical decision.)

8 Check the mathematical equation (provided by the CAS)
graphically.

9 Try to generalize the problem with different inputs. (Difficult!)
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Further uses of the approach
Example: Thales’ Circle Theorem

1 Consider the unit circle and let A = (−1, 0), B = (1, 0).

2 C = (x , y), x2 + y2 = 1.

3 Checking if AC ⊥ BC means exactly that
(x − (−1)) · (x − 1) + (y − 0) · (y − 0) = 0, and this is
equivalent with our assumption on the sum of squares.

4 It is possible to formulate the converse of the statement:
What is the geometric locus of points (x , y) such that
AC ⊥ BC, when A and B are fixed?
Here we get a quadratic result — in general, this can be
much more complicated. (Collinearity: degree 1 — but:
conchoids, cissoids, strophoids (of degree 3)
or cardioids, deltoids or lemniscates (of degree 4)
were mostly quite well-known
by the ancient Greek mathematicians!)
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