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Abstract

We introduce GeoGebra Discovery that can automatically prove or
discover geometric inequalities. It consists of

an extended version of GeoGebra,

a controller web service realgeom,

and the computational tool Tarski
(with the extensive help of QEPCAD B).

We successfully solve several non-trivial problems in Euclidean
planar geometry via a simple graphical user interface.
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GeoGebra: open platform for teaching and learning math
geogebra.org
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https://www.geogebra.org


GeoGebra Discovery: an experimental version of GeoGebra
github.com/kovzol/geogebra-discovery
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https://github.com/kovzol/geogebra-discovery


GeoGebra Discovery: an experimental version of GeoGebra
github.com/kovzol/geogebra-discovery
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Implementation: System layout of GeoGebra Discovery
September 2020

GeoGebra 5
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R. Vajda and Z. Kovács, “GeoGebra and the realgeom reasoning tool,” in
PAAR+SC-Square 2020. Workshop on Practical Aspects of Automated
Reasoning and Satisfiability Checking and Symbolic Computation
Workshop 2020, P. Fontaine, K. Korovin, I. S. Kotsireas, et al., Eds.,
2752 vols., Nov. 28, 2020, pp. 204–219. eprint:
http://ceur-ws.org/Vol-2752/paper15.pdf. [Online]. Available:
https://doi.org/urn:nbn:de:0074-2752-0
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Implementation: System layout of GeoGebra Discovery
March 2021
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Implementation: System layout of GeoGebra Discovery
May 2021
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Implementation: System layout of GeoGebra Discovery
July 2021
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Implementation: System layout of GeoGebra Discovery
Planned, on-going work
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Motivation
A generalization of the Pythagorean Theorem

1 Equational hypotheses:

2 Non-degeneracy condition:

v10 · (v5 · v4 − v6 · v3 − v5 · v2 + v3 · v2 + v6 · v1 − v4 · v1) = 1

3 Exploration related equation: µ · v2
7 = v2

8 + v2
9

4 Non-equational assumptions: v7 > 0 ∧ v8 > 0 ∧ v9 > 0

⇒ µ > 1/2
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Motivation
A generalization of the Pythagorean Theorem

Symbolic check in GeoGebra (via Relation(a2 + b2,c2)):
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Applied methods

1 Exploration related equation:

Q1 = µ · Q2

where Q1 and Q2 are the geometric quantities to compare and
µ ∈ R is a new variable (“proportion” or “ratio”).

2 Derivation of an equivalent form
of the (semi-)algebraic system:

1 elimination via Gröbner bases, for algebraic systems,
2 cylindrical algebraic decomposition (CAD) and

real quantifier elimination (RQE), for semi-algebraic systems.

⇒ m · Q2 <
(=)

Q1 <
(=)

M · Q2

where m,M ∈ R+
0 are sharp constants.
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A semi-algebraic technique
Cylindrical Algebraic Decomposition (CAD) and Real Quantifier Elimination (RQE)

Definition

Given a set S of polynomials in Z[x1, x2, . . . , xn], a CAD is a
decomposition of Rn into special connected semi-algebraic sets,
on which each polynomial has constant sign, either +, − or 0.

Example: S = {x2
1 + x2

2 − 1} and a CAD of it. Here R2 can be
decomposed into 13 semi-algebraic sets (13 = 1 + 3 + 5 + 3 + 1).
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Reformulating the problem as input for RQE (via CAD)
Generalization of the Pythagorean theorem

The quantified formula (after simplifying):

∃
v10,v5,v6,v7,v8,v9∈R

v7 > 0 ∧ v8 > 0 ∧ v9 > 0 ∧

v10v6 = 1 ∧ −v2
5 + 2v5 − v2

6 + v2
8 = 1 ∧ v2

5 + v2
6 = v2

9 ∧
v7 = 1 ∧ µ = v2

8 + v2
9 .

⇒ µ > 1/2 (a quantifier-free formula).
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Additional ways for users to enter input
. . .instead of using Relation(a2 + b2,c2)

1 Direct proof by typing Prove(a2 + b2 > c2/2), or by
trial-and-error:

e.g. Prove(a2 + b2 > c2)

→ false,
e.g. Prove(a2 + b2 > c2/3) → true,
. . .

2 Low-level command Compare(a2 + b2,c2) to get direct result
(→ JavaScript API)

3 In simpler cases: point-and-click (via the Relation tool)
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Shortest path between two sides of a regular pentagon?
Quick answer by using the Relation tool
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Shortest path between two sides of a regular pentagon?
First attempt: a numerical comparison (no result)
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Shortest path between two sides of a regular pentagon?
Second-third attempts: symbolic comparisons with proportions
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Shortest path between two sides of a regular pentagon?
The (semi-)algebraic translation of the geomeric setup
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Shortest path between two sides of a regular pentagon?
Final input for Tarski (after delineraization) ⇒ output
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https://www.usna.edu/Users/cs/wcbrown/tarski/index.html


Euler’s Inequality

Theorem (Euler 1765, Chapple 1746)

In all triangle it holds that R ≥ 2 · r where R is the circumradius
and r is the inradius of the triangle.
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Euler’s Inequality in an isosceles triangle
(Semi-)algebraic translation
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Euler’s Inequality in an isosceles triangle
Output in GeoGebra Discovery
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Euler’s Inequality
Benchmarking (outputs in seconds, timeout: 30 secs, Intel Xeon CPU X5675 @ 3.07GHz)

CAD backend
Case Result Mathematica Tarski + QEPCAD B

Isosceles R ≥ 2 · r 1.2 8.7

Right R ≥ (
√

2 + 1) · r 2.1 4.3
General R ≥ 2 · r timeout 21.5

A. Strzeboński, “Cylindrical algebraic decomposition using
local projections,” Journal of Symbolic Computation, vol. 76,
pp. 36–64, Sep. 2016

F. Vale-Enriquez and C. Brown, “Polynomial constraints and
unsat cores in Tarski,” in Mathematical Software – ICMS
2018. LNCS, vol. 10931, Springer, Cham, 2018, pp. 466–474
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Benchmarks

131 simple/moderate tests Database

117/116 can be successfully solved (Mathematica/Tarski)
within 30 seconds

Density estimate on 103 tests that work uniformly (timing in ms),

µM = 1361, µT = 2841, σM = 3379, σT = 4616

46 additional tests to prove a given conjecture Database

33/35 can be successfully proven (Mathematica/Tarski)
within 40 seconds
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https://prover-test.geogebra.org/job/GeoGebra_Discovery-comparetest/114/artifact/fork/geogebra/test/scripts/benchmark/compare/html/all.html
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Thank you!

The yellow region corresponds to a semi-algebraic set!
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