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What is the Area Method?
The  area  method  is a decision  procedure  for  a subset  of Euclidean  geometry,  developed  by Chou,  Gao,  

and  Zhang.  Its  main  feature,  cited  by its  authors  as an advantage  over  other  decision  procedures  for  

geometry,  is that  it generates  shorter,  more  human-readable  proofs  of many  theorems  when  compared  

to other  methods  . This  is achieved  by carefully  keeping  track  of the  construction  steps  used  when  

setting  up  a particular  geometric  construction  and  by only  allowing  conjectures  of the  form  E1 = E2 (or  

analogous  inequalities),  where  E1 and   E2 are  arithmetic  expressions  in geometric  quantities  . Points  

occurring  in the  conjecture  are  then  “eliminated”  in the  reverse  order  of their  construction  using  

appropriate  Elimination  Lemmas  .

Geometric  Quantities

Primitive  Objects

◦ The  AM  makes  use  of one  type  of primitive  object,  called  points. These  are  typically  identified  with  

points  on  the  Euclidean  plane.  The  set  of all  points  is denoted  ℙ. For  our  purposes  we  may  identify  ℙ 

with  the  Euclidean  plane.

◦ There  is also  a primitive  binary  function  •• : ℙ2 →ℝ, called  the  signed  distance , which  has  the  following  

properties:

• xy = 0 ⧦ x = y;

• xy = -yx.

◦ The  final  primitive  object  is a ternary  function  ••• : ℙ3 →ℝ, called  the  signed  area,  with  the  following  

properties:

• abc =bca ;

• abc = -acb ;

• aac = 0.

Derived  Functions

◦ For  any  three  points  a, b, c ∈ ℙ we  define  their  Pythagorean  difference  xyz = xy
2 + yz

2 - xz
2

. This  defini -

tion  has  many  useful  properties,  in particular:

• xyz = 0 ⧦∠xyz =
π
2

;



• xyx =yxy = 2⨯xy
2

;

• xxy =xyy = 0.

◦ For  notational  convenience  the  following  two  functions  are  also  introduced:

• vxyz := vxz -yxz ;

• vxyz := vxy +vzy .

Geometric  Quantities

By a geometric  quantity  we  mean  either  of the  following:

• a ratio  of signed  distances  
ab

xy
, subject  to the  constraints  that  the  points  x and  y are  distinct  and  the  

lines  ab and  xy are  parallel;

• a signed  area  or Pythagorean  difference.

Elementary  Construction  Steps

There  are  5 Elementary  Construction  Steps  (ECS’s)  utilised  by the  area  method.  For  a construction  step  

to be well-defined  certain  conditions,  called  non-degeneracy  conditions,  may  be required.  Some  ECS’s  

also  require  a parameter  to be provided  as an argument-  this  may  be a real  number  or a symbolic  

parameter  r. Combined,  these  steps  can  be used  to reproduce  a large  subset  of classical  straightedge  

and  compass  constructions.  Additionally,  some  non-classical  constructions  are  also  possible  thanks  to 

the  fact  that  the  parameter  r can  be any  real  number.  This  makes  it possible  to,  for  instance,  square  the  

circle.

Elementary  Construction  Step  1

Constructs  an arbitrary  point  U,  denoted  ECS1[U].  This  is the  only  ECS  which  can  be invoked  without  

first  defining  any  other  points,  and  as such  is used  to initialize  any  and  all  geometric  constructions.  

Points  introduced  by this  step  are  called  “free  points”.  All  free  points  in a construction  are  assumed  to 

be distinct.

In[78]:= ECS1 [u]

Out[78]= ECS1 [u]

It is possible  to define  many  free  points  at once:

In[79]:= ECS1 [x,y,z]

Out[79]= ECS1 [x, y, z]

Elementary  Construction  Step  2

Constructs  a point  Y such  that  it is the  intersection  of (LINE  U V) and  (LINE  P Q),  denoted  by ECS2[y,  u, v, 

p, q].
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In[80]:= ECS2 [y,u,v,p,q]@ECS1 [u,v,p,q]

Out[80]= ECS2 [y, u, v, p, q][ECS1 [u, v, p, q]]

Elementary  Construction  Step  3

Constructs  a point  Y such  that  it is the  foot  from  a given  point  P to (LINE  U V),  denoted  ECS3[y,  p,  u, v],

In[81]:= ECS3 [y,p,u,v]@ECS1 [p,u,v]

Out[81]= ECS3 [y, p, u, v][ECS1 [p, u, v]]

Elementary  Construction  Step  4

Constructs  a point  Y on  the  line  passing  through  the  point  W and  parallel  to (LINE  U V) such  that  

WY = r UV, denoted  ECS4[y,  w,  u, v, r].  Note  that  r can  be a real  number,  a geometric  quantity,  or a

variable.

In[82]:= ECS4 [y,w,u,v,r]@ECS1 [w,u,v]

Out[82]= ECS4 [y, w, u, v, r][ECS1 [w, u, v]]

Elementary  Construction  Step  5

Constructs  a point  Y on  the  line  passing  through  the  point  U and  perpendicular  to (LINE  U V) such  that  
4 UVY

UVU
= r, denoted  ECS5[y, u, v, r].  Note  that  r can  be a real  number,  a geometric  quantity,  or  a variable.

In[83]:= ECS5 [y,u,v,r]@ECS1 [u,v]

Out[83]= ECS5 [y, u, v, r][ECS1 [u, v]]

Geometric  Constructions

A geometric  construction  is a (finite)  list   = (C1, C2, ..., Cn) where  each  Ci, 1 ≤ i ≤ n is an Elementary  

Construction  Step.  For  each  Ci the  points  used  in that  construction  step  must  already  by introduced  by 

some  construction  step  appearing  earlier  in the  list.  The  point  introduced  by step  i is said  to have  order  

i within  the  construction.

Elimination  Lemmas

Elimination  Lemmas  are  used  to eliminate  all  occurrences  of constructed  points  from  the  stated  conjec -

ture.  At each  step  this  elimination  process  removes  the  last-  with  respect  to the  construction  order-  

constructed  point  which  still  occurs  in the  conjecture.  In many  cases  this  procedure  will  be  sufficient  to 

resolve  a conjecture.  For  example  the  triangle  inequality  can  be constructed  and  stated  using  only  free  

points,  which  means  that  no  Elimination  Lemmas  can  be applied.  However,  we  still  expect  the  triangle  

inequality  to be true  and  provable.  In cases  like  this  one  it is necessary  to make  use  of area  coordinates.  
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In cases  like  this  it is necessary  to make  use  of a area  coordinates.  In total  there  are  13 Elimination  

Lemmas  and  an additional  3 which  can  be applied  if the  use  of area  coordinates  is necessary.

Why use Wolfram  Language?

◦ There  are  many  reasons  why  the  Wolfram  Language  is well  suited  for  the  area  method.  A particularly  

important  one  is that  Wolfram  Language  excels  at (conditional)  pattern  matching.  This  makes  it very  

quick  and  easy  to implement  and  apply  the  point  elimination  procedure  described  above.  The  example  

below  shows  that  the  internal  representation  of an elimination  lemma  is essentially  a direct  translation  

of its  mathematical  form.

In[84]:= Column 
UnderBar "Elimination Lemma 9",
"If Y is introduced by ECS5 [Y,P,Q,r], then :",

TraditionalForm Subscript [, ABY ]⩵Subscript [, ABP ]-4r Subscript [, PAQB ],
,

UnderBar "Internal Implementation ",
Block 

{Y,P,Q,r},

(*p=construction Y,"points "〚1〛,construction Y,"points "〚2〛,r=construction [Y,"parameters

HoldPattern PythagoreanDifference A_,B_,Y,pO_Association ⧴PythagoreanDifference [A,B




Out[84]=

Elimination Lemma 9

If Y is introduced by ECS5 [Y,P,Q,r], then:

ABY  ABP - 4 r PAQB

Internal Implementation

HoldPattern [PythagoreanDifference [A_, B_, Y, pO_Association ]] ⧴
PythagoreanDifference [A, B, P, pO] - 4 r SignedArea [P, A, Q, B, pO]

◦ Another  reason  is accessibility  - all  one  needs  to prove  theorems  is internet  access.

◦ This  might  also  be useful  in the  classroom.

Examples

The Existence  of the Euler Line

The  Euler  Line  is a line  determined  for  any  triangle  which  is not  equilateral.  It passes  through  many  

triangle  centers,  in particular  through  the  orthocenter,  circumcenter,  and  centroid.
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In[85]:= Get "C:\\Users \\heimr \\WolframWorkspaces \\Kernel \\StartUp \\PlaneGeometry \\AreaMethod .m";

Get : Cannot open C:\Users \heimr \WolframWorkspaces \Kernel \StartUp \PlaneGeometry \AreaMethod .m.

In[86]:= (* Constructing the orthocenter , circumcenter , and centroid of a triangle . *)

ClearAll ELConstruction ;
ELConstruction =IsOrthocenter [x,a,b,c]@IsCircumcenter [y,a,b,c]@IsCentroid [z,a,b,c]@FreePoint

Out[87]= IsOrthocenter [x, a, b, c][

IsCircumcenter [y, a, b, c][IsCentroid [z, a, b, c][FreePoint [a, b, c]]]]

In[88]:= (* Stating the conjecture . *)

ClearAll ELConjecture ;
ELConjecture =Collinear [x,y,z]//TraditionalForm 

Out[89]//TraditionalForm=

Collinear (x, y , z)

In[90]:= (* Proving the conjecture . *)

Column AbsoluteTiming @VerifyConjecture ELConjecture ,ELConstruction ,"UseAreaCoordinates "→True

Out[90]=

7. × 10-6

VerifyConjecture [Collinear (x, y, z), IsOrthocenter [x, a, b, c][

IsCircumcenter [y, a, b, c][IsCentroid [z, a, b, c][FreePoint [a, b, c]]]],

UseAreaCoordinates → True, ProofNotebook → True ]

Note  that  the  way  we  stated  the  conjecture  above  it is also  true  for  equilateral  triangles,  since  in that  

case  xyz  is also  zero.

The Triangle  Inequality

In[91]:= (* Constructing a triangle . *)

ClearAll triangle ;
triangle =FreePoint [a,b,c]

Out[92]= FreePoint [a, b, c]

In[93]:= (* Stating the conjecture . *)

ClearAll triangleInequality ;
triangleInequality =Sqrt PythagoreanDifference [a,b,a]2+Sqrt PythagoreanDifference [b,c,b]2≥Sqrt

Out[94]//TraditionalForm=

PythagoreanDifference (a, b, a)

2
+

PythagoreanDifference (b, c, b)

2
≥

PythagoreanDifference (a, c, a)

2
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In[95]:= (* Proving the inequality . *)

VerifyConjecture triangleInequality ,triangle ,"UseAreaCoordinates "→True ,"ProofNotebook "→True

Out[95]= VerifyConjecture 
PythagoreanDifference (a, b, a)

2

+
PythagoreanDifference (b, c, b)

2

≥

PythagoreanDifference (a, c, a)

2

, FreePoint [a, b, c],

UseAreaCoordinates → True, ProofNotebook → True 

Ceva’s Theorem

In[96]:= (* Ceva 's Theorem Construction *)

ClearAll [cevasSetup ];

cevasSetup =IsIntersection f,c,o,a,b@IsIntersection [e,b,o,a,c]@IsIntersection [d,a,o,b,c]@FreePoint

Out[97]= IsIntersection [f, c, o, a, b][

IsIntersection [e, b, o, a, c][IsIntersection [d, a, o, b, c][FreePoint [a, b, c, o]]]]

In[98]:= (* Stating the conjecture . *)

ClearAll [cevasTheorem ];

cevasTheorem =
SignedDistance a,f

SignedDistance f,b

SignedDistance [b,d]

SignedDistance [d,c]

SignedDistance [c,e]

SignedDistance [e,a]
⩵1 //TraditionalForm

Out[99]//TraditionalForm=

SignedDistance (a, f ) SignedDistance (b, d) SignedDistance (c, e)

SignedDistance (e, a) SignedDistance (f , b) SignedDistance (d , c)
 1
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In[100]:=

a

b

c

d

e

f

o

Out[100]=

a

b

c

d

e

f

o

In[101]:= VerifyConjecture cevasTheorem ,cevasSetup ,"ProofNotebook "→True 

Out[101]= VerifyConjecture 
SignedDistance (a, f ) SignedDistance (b, d) SignedDistance (c, e)

SignedDistance (e, a) SignedDistance (f, b) SignedDistance (d, c)
 1,

IsIntersection [f, c, o, a, b][IsIntersection [e, b, o, a, c][

IsIntersection [d, a, o, b, c][FreePoint [a, b, c, o]]]], ProofNotebook → True 
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In[102]:= (* What if we try to prove a false conjecture ? *)

ClearAll [cevaCounterexample ];

cevaCounterexample =cevasTheorem /.SignedDistance a,f→SignedDistance [a,c]

Out[103]//TraditionalForm=

SignedDistance (a, c) SignedDistance (b, d) SignedDistance (c, e)

SignedDistance (e, a) SignedDistance (f , b) SignedDistance (d , c)
 1

In[104]:= Grid 
AbsoluteTiming @VerifyConjecture cevaCounterexample ,cevasSetup ,"ProofNotebook "→True ,
AbsoluteTiming @VerifyConjecture cevaCounterexample ,cevasSetup ,"ProofNotebook "→True ,"CheckParallelRatio



Out[104]=

6. × 10-6 VerifyConjecture  SignedDistance a,c SignedDistance b,d  SignedDistance c,e
SignedDistance e,a SignedDistance f ,b SignedDistance d,c

 1,

IsIntersection [f, c, o, a, b][IsIntersection [e, b, o, a, c][

IsIntersection [d, a, o, b, c][FreePoint [a, b, c, o]]]], ProofNotebook → True 

1. × 10-6 VerifyConjecture  SignedDistance a,c SignedDistance b,d  SignedDistance c,e
SignedDistance e,a SignedDistance f ,b SignedDistance d,c

 1,

IsIntersection [f, c, o, a, b][IsIntersection [e, b, o, a, c][

IsIntersection [d, a, o, b, c][FreePoint [a, b, c, o]]]],

ProofNotebook → True, CheckParallelRatios → True 

Some Evaluation  Times

In[105]:= (* Set up some constructions and conjectures . *)

ClearAll [cevasTheorem , desarguesTheorem , ELTheorem ,

gaussNewtonLineTheorem , heronsFormula , interceptTheorem , midpointTheorem ,

menelausTheorem , pappusTheorem , pythagorasTheorem , triangleInequality ];

cevasSetup = IsIntersection [ ][ ] ;

cevasTheorem =

TraditionalForm [((AreaMethod`SignedDistance [a, f] × AreaMethod`SignedDistance [b, d]) ×

AreaMethod`SignedDistance [c, e]) /

((AreaMethod`SignedDistance [f, b] × AreaMethod`SignedDistance [d, c]) ×

AreaMethod`SignedDistance [e, a]) ⩵ 1];

desarguesSetup = OnInterLineParallel [ ][ ] ;

desarguesTheorem = Parallel [b, c, b2, c2] // TraditionalForm ;

ELTheoreomSetup = IsCentroid [ ][ ] ;

ELTheorem = TraditionalForm [AreaMethod`Collinear [x, y, z]];

gaussNewtonLineSetup = IsMidpoint [ ][ ] ;

gaussNewtonLineTheorem = TraditionalForm [AreaMethod`Collinear [m1, m2, m3]];

heroSetup = FreePoint [ ] ;

heronsFormula = TraditionalForm 16 AreaMethod`SignedArea [a, b, c]2 ⩵
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AreaMethod`PythagoreanDifference [a, c, a] × AreaMethod`PythagoreanDifference [

b, a, b] - AreaMethod`PythagoreanDifference [c, a, b]2;
interceptSetup = IsIntersection [ ][ ] ;

interceptTheorem = TraditionalForm 

AreaMethod`SignedDistance [s, a]

AreaMethod`SignedDistance [a, b]
⩵

AreaMethod`SignedDistance [s, c]

AreaMethod`SignedDistance [c, d]
;

midpointSetup = IsMidpoint [ ][ ] ;

midpointTheorem = TraditionalForm [AreaMethod`Parallel [a, b, d, e]];

menelausSetup = IsIntersection [ ][ ] ;

menelausTheorem =

TraditionalForm [((AreaMethod`SignedDistance [a, f] × AreaMethod`SignedDistance [b, d]) ×

AreaMethod`SignedDistance [c, e]) /

((AreaMethod`SignedDistance [f, b] × AreaMethod`SignedDistance [d, c]) ×

AreaMethod`SignedDistance [e, a]) ⩵ -1];

pappusSetup = IsIntersection [ ][ ] ;

pappusTheorem = TraditionalForm [AreaMethod`Collinear [x, y, z]];

pythagoreanSetup = OnPerp [ ][ ] ;

pythagorasTheorem = (*TraditionalForm [AreaMethod`PythagoreanDifference [c,a,b]⩵0]*)

AreaMethod`PythagoreanDifference [c, a, b] ⩵ 0;

triangleInequalitySetup = ECS1 [ ] ;

triangleInequality = AreaMethod`PythagoreanDifference [a, b, a] / 2 +

AreaMethod`PythagoreanDifference [b, c, b] / 2 ≥
AreaMethod`PythagoreanDifference [c, a, c]  2;

Grid [{{"Theorem", "Area Coordinates ", "Time", "Result"},

Flatten @{"Ceva's Theorem", "no", AbsoluteTiming [

VerifyConjecture [cevasTheorem , cevasSetup (*,"CheckParallelRatios "→True*)]]},
Flatten @{"Desargues Theorem", "no", AbsoluteTiming [

VerifyConjecture [desarguesTheorem , desarguesSetup ]]},

Flatten @{"Euler Line", "yes", AbsoluteTiming [

VerifyConjecture [ELTheorem , ELTheoreomSetup , "UseAreaCoordinates " → True ]]},

Flatten @{"Gauss-Newton Line", "yes", AbsoluteTiming [VerifyConjecture [

gaussNewtonLineTheorem , gaussNewtonLineSetup , "UseAreaCoordinates " → True ]]},

Flatten @{"Heron's Formula", "yes", AbsoluteTiming [

VerifyConjecture [heronsFormula , heroSetup , "UseAreaCoordinates " → True ]]},

Flatten @{"Intercept Theorem", "no", AbsoluteTiming [VerifyConjecture [

interceptTheorem , interceptSetup , "CheckParallelRatios " → True ]]},

Flatten @{"Midpoint Theorem", "no", AbsoluteTiming [VerifyConjecture [

midpointTheorem , midpointSetup ]]}, Flatten @{"Menelaus ' Theorem",

"no", AbsoluteTiming [VerifyConjecture [menelausTheorem , menelausSetup ]]},

Flatten @{"Pappus's Line Theorem", "no",
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AbsoluteTiming [VerifyConjecture [pappusTheorem , pappusSetup ]]},

Flatten @{"Pythagorean Theorem", "no",

AbsoluteTiming [VerifyConjecture [pythagorasTheorem , pythagoreanSetup ]]},

Flatten @{"Triangle Inequality ", "yes", AbsoluteTiming [VerifyConjecture [

triangleInequality , triangleInequalitySetup , "UseAreaCoordinates " → True ]]}},

Frame → All, Alignment → {{Left, Center, Center, Center }}]

Theorem Area Coordinates Time Result

Ceva's Theorem no 3. × 10-6 VerifyConjecture [

(AreaMethod`SignedDistance (a, f )

AreaMethod`SignedDistance (

b, d)

AreaMethod`SignedDistance (

c, e)) /

(AreaMethod`SignedDistance (

e, a)

AreaMethod`SignedDistance (

f, b)

AreaMethod`SignedDistance (

d, c))  1,

AreaMethod`IsIntersection [

f, c, p, a, b][

AreaMethod`IsIntersection [

e, b, p, a, c][

AreaMethod`IsIntersection [

d, a, p, b, c][

AreaMethod`FreePoint [

a, b, c, p]]]]]

Desargues Theorem no 2. × 10-6 VerifyConjecture [

Parallel (b, c, b2, c2),

AreaMethod`OnInterLineParallel [

c2, a2, x, c, a, c][

AreaMethod`OnInterLineParallel [

b2, a2, x, b, a, b][

AreaMethod`OnLine [x, a, a2][

AreaMethod`FreePoint [

a, b, c, a2]]]]]
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Out[128]=

Euler Line yes 3. × 10-6 VerifyConjecture [

AreaMethod`Collinear (x, y, z),

AreaMethod`IsCentroid [z, a, b, c][

AreaMethod`IsOrthocenter [

y, a, b, c][

AreaMethod`IsCircumcenter [

x, a, b, c][

AreaMethod`FreePoint [

a, b, c]]]],

UseAreaCoordinates → True ]

Gauss-Newton Line yes 3. × 10-6 VerifyConjecture [

AreaMethod`Collinear (m1, m2, m3),

AreaMethod`IsMidpoint [m3, x, y][

AreaMethod`IsMidpoint [m2, a0,

a2][AreaMethod`IsMidpoint [

m1, a1, a3][

AreaMethod`IsIntersection [

y, a0, a1, a2, a3][

AreaMethod`IsIntersection [

x, a0, a3, a1, a2][

AreaMethod`FreePoint [

a0, a1, a2, a3]]]]]],

UseAreaCoordinates →
True ]

Heron's Formula yes 1. × 10-6 VerifyConjecture 
16 AreaMethod`SignedArea (

a, b, c)2 
AreaMethod`PythagoreanDiffere

nce(b, a, b)

AreaMethod`PythagoreanDiffe
rence (a, c, a) -

AreaMethod`PythagoreanDiffer
ence (c, a, b)2,

AreaMethod`FreePoint [a, b, c],

UseAreaCoordinates → True 
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Intercept Theorem no 2. × 10-6 VerifyConjecture 
AreaMethod`SignedDistance s,a
AreaMethod`SignedDistance a,b


AreaMethod`SignedDistance s,c
AreaMethod`SignedDistance c,d 

,

AreaMethod`IsIntersection [s, a,

b, c, d][AreaMethod`OnParallel [

d, b, a, c, r][

AreaMethod`FreePoint [a, b, c]]],

CheckParallelRatios → True 

Midpoint Theorem no 2. × 10-6 VerifyConjecture [

AreaMethod`Parallel (a, b, d, e),

AreaMethod`IsMidpoint [e, a, c][

AreaMethod`IsMidpoint [d, b, c][

AreaMethod`FreePoint [a, b, c]]]]

Menelaus ' Theorem no 0. VerifyConjecture [

(AreaMethod`SignedDistance (a, f )

AreaMethod`SignedDistance (

b, d)

AreaMethod`SignedDistance (

c, e)) /

(AreaMethod`SignedDistance (

e, a)

AreaMethod`SignedDistance (

f, b)

AreaMethod`SignedDistance (

d, c))  -1,

AreaMethod`IsIntersection [

f, x, y, a, b][

AreaMethod`IsIntersection [

e, x, y, a, c][

AreaMethod`IsIntersection [

d, x, y, b, c][

AreaMethod`FreePoint [

a, b, c, x, y]]]]]
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Pappus's Line Theorem no 3. × 10-6 VerifyConjecture [

AreaMethod`Collinear (x, y, z),

AreaMethod`IsIntersection [

z, B1, C2, B2, C1][

AreaMethod`IsIntersection [

y, A1, C2, A2, C1][

AreaMethod`IsIntersection [

x, A1, B2, A2, B1][

AreaMethod`OnLine [C2, A2, B2][

AreaMethod`OnLine [C1, A1,

B1][AreaMethod`FreePoint [

A1, A2, B1, B2]]]]]]]

Pythagorean Theorem no 3. × 10-6 VerifyConjecture [

AreaMethod`PythagoreanDifferen
ce[c, a, b] ⩵ 0,

AreaMethod`OnPerp [c, a, b][

AreaMethod`FreePoint [a, b]]]

Triangle Inequality yes 3. × 10-6 VerifyConjecture 
AreaMethod`PythagoreanDifference a,b,a

2
+

AreaMethod`PythagoreanDifference b,c,b

2

≥ 1

2

√AreaMethod`PythagoreanDiffe
rence [c, a, c],

AreaMethod`ECS1 [a, b, c],

UseAreaCoordinates → True 

Further Work
◦ Extend  to higher  dimensions.

◦ Work  in different  geometries  (Poincaré  disc  seems  like  a good  candidate).

◦ Integrate  with  existing  synthetic  geometry  functionality.
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