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Rigid and Non-Rigid Graphs
Notation: Let G = (V, E) be a graph, and let A\: E — R~ be a
labeling of its edges, that is realizable (as lengths in R2).
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Rigid and Non-Rigid Graphs
Notation: Let G = (V, E) be a graph, and let A\: E — R~ be a
labeling of its edges, that is realizable (as lengths in R2).

Example: G = (V, E) with

V =1{1,2,3,4},
E={{1,2},{2,3}, 1
{3,4},{1,4}} ) 4
and
A(1,2) = A\(1,4) = 0.75

A(2,3) = A\(3,4) =1
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Example: G = (V, E) with

V ={1,2,3,4}, 1
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Rigid and Non-Rigid Graphs
Notation: Let G = (V, E) be a graph, and let A\: E — R~ be a
labeling of its edges, that is realizable (as lengths in R2).

Example: G = (V, E) with 1
V ={1,2,3,4},
E = {{172}, {273}7
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A(1,4) =0.75
A(2,3) = A\(3,4) =1
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Rigid and Non-Rigid Graphs
Notation: Let G = (V, E) be a graph, and let A\: E — R~ be a
labeling of its edges, that is realizable (as lengths in R2).

Example: G = (V, E) with 1

V ={1,2,3,4},

E= {{172}, {273}7

(3,4}, {14}, {2,4}}) , .

and

A(1,2) = \(1,4) = 0.75

A(2,3) = A(3,4) =

A2,4)=1
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Rigid and Non-Rigid Graphs
Notation: Let G = (V, E) be a graph, and let A\: E — R~ be a
labeling of its edges, that is realizable (as lengths in R2).

Example: G = (V, E) with 1

V ={1,2,3,4},

E= {{172}, {273}7

(3,4}, {14}, {2,4}}) , .

and

A(1,2) = \(1,4) = 0.75

A2,3) = A(3,4) =1

A2,4)=1

Definition: G is called rigid, if there is exactly one way,
modulo rotations and translations, how it can be embedded

in the plane, when the edge lengths X\ are given.
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Rigid and Non-Rigid Graphs
Notation: Let G = (V, E) be a graph, and let A\: E — R~ be a
labeling of its edges, that is realizable (as lengths in R2).

Example: G = (V, E) with

V ={1,2,3,4},
E= {{172}, {273}7
Bap (LA} (2,47} , .
and
A(1,2) = A(1,4) = 0.75
)\(2,3) =A3,4) =1
A2,4) = 1

Definition: G is called rigid, if there is exactly one way,
modulo rotations and translations, how it can be embedded

in the plane, when the edge lengths X\ are given.
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Rigid and Non-Rigid Graphs
Notation: Let G = (V, E) be a graph, and let A\: E — R~ be a
labeling of its edges, that is realizable (as lengths in R2).

Example: G = (V, E) with

V ={1,2,3,4},
E= {{172}, {273}7
Bap (LA} (2,47} , .
and
A(1,2) = A(1,4) = 0.75
)\(2,3) =A3,4) =1
A2,4) = 1

Definition: G is called rigid, if there are only finitely many ways,
modulo rotations and translations, how it can be embedded
in the plane, when the edge lengths X\ are given.
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Three-Prism Graph
Is this graph rigid?

Definition: G is called rigid, if there are only finitely many ways,
modulo rotations and translations, how it can be embedded

in the plane, when the edge lengths \ are given.
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Three-Prism Graph
Is this graph rigid? Yes!

Definition: G is called rigid, if there are only finitely many ways,
modulo rotations and translations, how it can be embedded

in the plane, when the edge lengths X\ are given generically.
2/38



Minimally Rigid Graphs

Definition: A rigid graph G is called minimally rigid (or Laman)
if removing any single edge makes G non-rigid.
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Minimally Rigid Graphs

Definition: A rigid graph G is called minimally rigid (or Laman)
if removing any single edge makes G non-rigid.

Question: When can we expect rigidity?
» # unknowns (coordinates of the vertices): 2 - |V/|
» # constraints: |F)|
» dim(direct isometries): 3

— Hence, |E| > 2|V| — 3 is a necessary condition for rigidity.
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Minimally Rigid Graphs

Definition: A rigid graph G is called minimally rigid (or Laman)
if removing any single edge makes G non-rigid.

Question: When can we expect rigidity?
» # unknowns (coordinates of the vertices): 2 - |V/|
» # constraints: |F)|
» dim(direct isometries): 3

— Hence, |E| > 2|V| — 3 is a necessary condition for rigidity.

Theorem. (Geiringer 1927, Laman 1970)
A graph G = (V, E) is minimally rigid if and only if
1. |[E|=2|V] -3,
2. |E'| < 2|V'| — 3 for each subgraph G' = (V', E’) of G.

3/38



Some Minimally Rigid Graphs
All minimally rigid graphs with 2 < n < 5 vertices:

n=2:

4/38



Some Minimally Rigid Graphs
All minimally rigid graphs with 2 < n < 5 vertices:

4/38



Some Minimally Rigid Graphs
All minimally rigid graphs with 2 < n < 5 vertices:

n =2
n=3
n=4

4/38



Some Minimally Rigid Graphs
All minimally rigid graphs with 2 < n < 5 vertices:
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<
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Some Minimally Rigid Graphs

All minimally rigid graphs with 6 vertices:

NI GG
N PO <> A0
<y A <>
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Some Minimally Rigid Graphs
There are 70 minimally rigid graphs with 7 vertices:

@‘§N>“ &< <P
VD @ A s @
A‘\ \/%%%ﬁ Ay
W ) O & N P O
0> Q0 =R M /A =

4
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Enumeration of Minimally Rigid Graphs

Number of minimally rigid graphs with n vertices:
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Enumeration of Minimally Rigid Graphs

Number of minimally rigid graphs with n vertices:

Number of minimally rigid graphs on n vertices.
1,1, 1, 1, 3, 13, 70, 609 (list; graph; refs; listen; history; text; int
18

All the minimally rigid graphs on n vertices

graphs on n-1 vertices by use of two types
constructions. In the first type a new ve
edges are added connecting the new vertex

of the graph. In the second type of const
which are connected by an edge are selecte
edge between v_1 and v_2 is deleted. & new
as the edges (v_1,w), (v_2,w),and (v_3,w).
one to the number of vertices and two to t
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Enumeration of Minimally Rigid Graphs

Number of minimally rigid graphs with n vertices:

608

7222
110132
2039273
44176717

Number of minimally rigid graphs on n vertices.
1, 1, 1, 1, 3, 13, 70, 609 (list; graph; refs; listen; history; text; int
1,5

All the minimally rigid graphs on n vertices

graphs on n-1 vertices by use of two types
constructions. In the first type a new ve
edges are added connecting the new vertex

of the graph. In the second type of const
which are connected by an edge are selecte
edge between v_1 and v_2 is deleted. & new
as the edges (v_1,w), (v_2,w),and (v_3,w).
one to the number of vertices and two to t

Number of minimally rigid graphs in 2D on n vertii
, 1, 1, 3, 13, 70, 608, 7222, 110132, 2039273, 44176717
(list; graph; refs; listen; history; text; internal format)

1,5

ALl the minimally rigid graphs on n vertices

graphs on n-1 vertices by use of two types
constructions. In the first type a new ver
edges are added connecting the new vertex t
of the graph. In the second type of constr
which are connected by an edge are selectec
edge between v_1 and v_2 is deleted. A new
well as the edges (v_1,w), (v_2,w),and (v_:
adds one to the number of vertices and two
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Enumeration of Minimally Rigid Graphs

Number of minimally rigid graphs with n vertices:

608

7222

110132
2039273
44176717
1092493042
30322994747
932701249291

A227117

Number of minimally rigid graphs on n vertices.

1, 1, 1, 1, 3, 13, 70, 609 (list; graph; refs; listen; history; text; int:

QOFFSET
COMMENTS

At
All the minimally rigid graphs on n vertices

graphs on n-1 vertices by use of two types
constructions. In the first type a new ve
edges are added connecting the new vertex

of the graph. In the second type of const
which are connected by an edge are selecte
edge between v_1 and v_2 is deleted. & new
as the edges (v_1,w), (v_2,w),and (v_3,w).
one to the number of vertices and two to t

A227117

a i 1Y

Number of minimally rigid graphs in 2D on n vertii

1, 1, 3, 13, 7e, €08, 7222, 119132, 2039273, 44176717

(list; graph; refs; listen; history; text; internal format)

OFFSET

COMMENTS

15

ALl the minimally rigid graphs on n vertices

graphs on n-1 vertices by use of two types
constructions. In the first type a new ver
edges are added connecting the new vertex t
of the graph. In the second type of constr
which are connected by an edge are selectec
edge between v_1 and v_2 is deleted. A new
well as the edges (v_1,w), (v_2,w),and (v_:
adds one to the number of vertices and two
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Number of Realizations
Minimally rigid graph with 3 vertices: 7
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Number of Realizations
Minimally rigid graph with 3 vertices: 2 realizations

AV
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Number of Realizations
Minimally rigid graph with 3 vertices: 2 realizations

AV‘

Minimally rigid graph with 4 vertices: ?
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Number of Realizations
Minimally rigid graph with 3 vertices: 2 realizations

AV‘

Minimally rigid graph with 4 vertices: 4 realizations
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Realizations of H1 Graphs

Definition: An H1 graph is a minimally rigid graph that can be
obtained by successively connecting a new vertex with two existing
ones, starting with the graph e——e
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Realizations of H1 Graphs

Definition: An H1 graph is a minimally rigid graph that can be
obtained by successively connecting a new vertex with two existing
ones, starting with the graph e——e

Number of realizations:
» Let G = (V, E) be an H1 graph.
> Fix a realizable labeling \: £ — Rsg.
» Fix the positions of the first two vertices, respecting A\(1,2).

» Each vertex that is added can be put at two different positions.
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Realizations of H1 Graphs

Definition: An H1 graph is a minimally rigid graph that can be
obtained by successively connecting a new vertex with two existing
ones, starting with the graph e——e

Number of realizations:
» Let G = (V, E) be an H1 graph.
> Fix a realizable labeling \: £ — Rsg.
» Fix the positions of the first two vertices, respecting A\(1,2).

» Each vertex that is added can be put at two different positions.

— There are 2!V1=2 realizations.

Definition: The Laman number Lam(G) of a minimally rigid
graph G is the number of realizations of (G, for a generic realizable
labeling A.

10/38



Minimally Rigid Graphs that are not H1

Question: What about minimally rigid graphs that are not H1?
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Minimally Rigid Graphs that are not H1

Question: What about minimally rigid graphs that are not H1?

Set up a system of equations:
> Let (x4, yy) be the coordinates of vertex v.
» For {u,v} € E:

(xu - xv)Q + (yu - yv)Q = )\(U,U)2.
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Minimally Rigid Graphs that are not H1

Question: What about minimally rigid graphs that are not H1?

Set up a system of equations:
> Let (x4, yy) be the coordinates of vertex v.
» For {u,v} € E:

(xu - xv)Q + (yu - yv)2 = )\(U,U)2.

Convention: From now on we work over the complex numbers:
» \: E—~C
> (0, y0) € C?

11/38
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Example: Three-Prism G
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Example: Three-Prism G

R N N N N

~— N Y Y Y Y —

A~~~ /N /N /N I/~ /N /~

~— N N N~ N~ N

)

0

» Take care of translations: (x1,y1) = (0,
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Example: Three-Prism Graph

= A(1,2)

Y2
Y

3

1)

ya)® = A(1

A(2,3)?

)2

x3)% + (y2 — 3

A(3,6)?

(z3 —26)* + (y3 — ¥6)?

A(4,5)3

)2

(24 —25)° + (ya — Y5
(24 — 26)* + (ya — Yo

(x5 — a:6)2 +

)? = A(4,6)*

ys — ys)> = A5

)

)2

6

)

(

(0,0

» Take care of rotations: zo =0 and y2 > 0

» Take care of translations: (x1,y1)

12/38



Example: Three-Prism Graph

= A(1,2)

Y2
Y

3

1)

ya)® = A(1

A(2,3)?

)2

x3)% + (y2 — 3

A(3,6)?

(z3 —26)* + (y3 — ¥6)?

A(4,5)3

)2

(24 —25)° + (ya — Y5
(24 — 26)* + (ya — Yo

(x5 — a:6)2 +

A(4,6)

2=

ys — ys)> = A5

)2

6

)

(

)

0

9

0

» Take care of rotations: zo =0 and y2 > 0

» Take care of translations: (x1,y1)

Question: How many solutions does this system have?
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Grobner Basis Approach

» Not feasible for symbolic parameters (i, j)
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Grobner Basis Approach

» Not feasible for symbolic parameters (i, j)
» Replace each A(,7) by a random integer
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» Do the computation modulo p =231 —1

{ys + 1727076644, x5 x5 + 1073741823 x3 + y5 yo + 1073741823 y@ + 2147483458 y5 + 1073746572, x4 xo + 1073741823 x + y4 yo + 1073741823y + 2147472199,

X3 Xg + 1073741 823 xF + 1073741823 y& + 420407 003 y + 2147476519, X3 ys + 1449935236 x4 ys + B7 139559 x5 y5 + B21 582392 s Xo +
534432936 y5 X6 + 2127 003394 X; Yo + 393 122455 X4 yo + 739525427 X5 Yo + 1428199694 Xg g + 1318362776 x5 + 45332622 X4 + 1666067743 x5 + 1402190174 x5,

xZ + yZ + 2147483269 y5 + 2147482119, Yy x5 + 1431835 485 x4 ys + 1585512332 x5 y5 + 2099455504 y4 Xg + 1274481640 y5 x6 + 1926461619 x5 s + 1819204 411 x4 v +
2061309228 X5 Y + 1860755017 X ys + 758303990 X5 + 504327305 X4 + 513732789 x5 + 1018326077 X5, Xa X5 + Vs V5 + 2147483458 y5 + 2147472715,

¥3 + SM418756 v s + 47332201 yZ + 1603064889 v ys + 1508400303 ys ys + 591751051 yZ + 1072510925 , x, y4 + 1252848548 x, ys + 1309508129 x5 y5 + 2016071 435y, xo +
1654953235 y5 Xo + 1 BI960659 x5y + 577627465 X4y + 876148120 x5y + 335588542 x5 ¥ + 2136682920 X3 + 1038483051 x, + 157778557 x5 + 540431 639 x5,

X3 ya + 204011627 x4 y5 + 839002279 x5 5 + 368180718 4 xo + 1 641249205 y5 x5 + 430135887 x5 o + 486556477 x4y + 1706891991 x5 yo + B3A15 671 xo ys + 123469149 x5 +
554422930 x; + 125778068 x5 + 1936702634 g, X§ + 1603064891 y4 ys + 2100151353 y7 + 544418758 y4 yo + 639083344 ys yo + 1555732596 yZ + 1074934697,

x§ + 1527353090, y& + 72446234 x3 x4 + 191839850 x3 x5 + 1 293615 843 y4 ys + 2115905836 yZ + 158590087 xZ + B0BI24606 y4 ye + 45043470 ys ye + 57464572 y2 +
1051760435 v + 458639039 ys + 890226333 y + 306458357, xo y& + 1202942319 x4 ys + BIL 621123 %5 y5 + 631981073 ys ¥s + 1268149853 y5 Xo +
566843284 x5 5 + 1579449712 x4 yo + 2096672325 x5 yo + 217935702 xg v + 1838771945 x5 + 1574100689 x, + BIOT11 649 x5 + 527754 025 x5,

ys y& + 1397298562 x3 x4 + 1093626759 x3 x5 + 1874498615 v, ys + 410806791 y2 + 34715881 x? + 1602680419 v ys + 1365806073 ys5 ye + 1574368257 y& +
1986672592 y, + 1454700418 y5 + 207782012 yg + 817238271, x5 yé + 906551 028 x4 y5 + 2088326233 x5 y5 + 93660499 y 4 X + 2020744231 y5 x5 + 43BIB2960 x5y +
105460105 x4 g + 1791795415 X5 ¥ + 752 681903 x5 ¥ + 1243232341 Xg + 236567207 x4 + 2039336085 x5 + 204724127 X, ya Y& + 1798033564 X3 x4 + 1368970181 x5 x5 +
2111288438 y, ys + 2116525 809 yZ + 631579871 xf + 2098374939 ys yo + 14559548 y5 yo + 265925976 yZ + 768097244 y,4 + 197849421 y5 + 1272087803 ys + 1 50925261 ,

x4y + 2000108329 x; y5 + 138882411 x5 ys + 1964621 BB2 s Xo + 1562649 152 y5 X + 274B009BO x5 i + 381 168929 x4y + 1561 080504 X5 v + 646135501 x5 o +
12520241999 x5 + 1 B2B948462 x4 + 1907059409 x5 + 1 062678925 X, X3 ¢ +1 M0064434 x4 y5 + 1699323466 X5 y5 + 2767389 y4 xo + 309430653 y5 Xo +
1746152111 x3 g + 1486922955 x4 y6 + 1042873400 x5 yg + 1877302158 X Y6 + BIBBGT 598 x3 + 2023749908 x4 + 1369459334 x5 + 1937 240806 X5,

X2 5+ 1859350300 X5 X, + BB 165967 X5 X5 + 1319416 915y y5 + 1281531769 yZ + 416445396 x2 + 555896977 v v + B3B162654 ys s + 1094699319 y& +
1025635396 4 + 758820774 y5 + 1932663106 ye + 902372666, ys o yo + 1776737250 x4 y5 + 1335234339 x5 5 + 197 659465 v xo + 3BB691 694 y5 xg +
1214819713 x5 yo + 1 236939013 x4 ye + 1895 585006 x5 yo + 1457663787 x5 v + 1 08824636 x5 + 1937866443 x4 + 906541 898 x5 + 1779256072 xo,

Ya Xo Yo + 392800087 x4 y5 + 43314235 x5 y5 + 1752015765 y4 X + 697 637736 y5 x5 + 1174862 040 x5 ys + 1726470482 x4 Yo + 524280549 x5 g + 1783594194 Xg ys +
777027038 x5 + 1196924 612 x4 + 669351 278 x5 + 136564514 Xo, y2 Yo + 769157270 x5 Xa + 30129177 x5 x5 + 147541859y, s + 696342885 y7 + 953052903 xZ + 63094058 y4 yo +
1607776536 s Yo + 2003959420 y ¢ + 1657122998 ya + 1041341 194 5 + 643362090 yg + 298205040, X5 Y5 Yo + 1361 36B571 x4 y5 + 443 005480 x5 y5 + 749246637 y4 xo +
556781711 5 Xg + 268588566 X3 Y6 + 179323388 x4 v + 260672145 X5 Y + 542761427 X6 Y5 + 2031 B14241 x5 + 112806238 x4 + 2024966158 x5 + 1634 398696 X5,

Va Vs Vo + 1495723262 x5 X4 + 1150552515 x5 % + 647627 904 v y5 + 834052304 yZ + 680400990 xF + 703082161 4 v + 1261907 640 s v + 1 146980666 yZ +
339024153 v, + 1829077 048 ys + 1 120614065 yg + 420646718, x4 ys yo + 391 7B9202 x4 ys + 1778622432 x5 y5 + 32574434 ys x5 + 638884222 ys x6 +
2008976092 x5 y6 + 1158838637 X4 v + 298082231 X5 ys + 579017 100 X v + 541015847 x5 + 1347513279 x4 + 1774560872 x5 + 1614705109 Xg,

X3 X5 Yo + 1581 681716 x5 x4 + 4866881 x3 X5 + 421 622009 y4 y5 + 1075313850 yZ + 1564800523 X + 198951616 v yg + 1466002977 y5 ys + 932669036 y& + 248319512 ys +
862020011 y5 + 649537600 y5 + B15933435, X3 X4 Yo + 1343545648 X3 x4 + 1023324514 X x5 + 40371239 y4 y5 + 1905269341 y7 + 1639954889 xZ + 786545101 y4 yo +
1219192433 y5 ¥ + 321512152 y¢ + 1631897898 y, + 850776521 ys + 530499711y + 2036743747, %3 + 1359379754 X, Y5 + 4699239 X5 y5 + 1446967796 ys X +
260472488 y5 x5 + 701675423 x5 5 + 1889155319 x, y + 112548169 x5 yo + 1629096917 x5 yg + B58508665 x5 + 820850436 x4 + 665336977 x5 + 1707 190979 x5,

¥s x& + 1013046 601 x3 X4 + 969596453 X3 x5 + 1553889292 v, v5 + 1185309841 y7 + 1987921573 x¢ + 1033458441 y; ye + 1320068753 ys yo + 1102491211 y2 +
1104911459 y; + 1375116864 y5 + 672833739 ye + 626376074, ys xZ + 2009134 087 x5 x4 + 1611713763 x5 X5 + 168461479 y, y5 + 1706153267 yZ +
1769015690 x£ + 1182579576 Y4 Yo + 557864255 ys ¥ + 503714063 y¢ + 176291393 ys + 1354085671 ys + 954347026 g + 734410570,

¥ X + 619010252 x4 y5 + 916121 455 x5 5 + 1431371 638 v, Xo + 969212309 ys Xo + 1949990023 x5 Y + 414782496 X4 Y + 1907745509 x5 g + HO36B126 x5 Vo +
1740320236 x5 + 1 975330810 x4 + 2143293978 x5 + 252311 982 x5, ya y5 X6 + 558167487 x4 y5 + 433016430 x5 y5 + 2075138717 v x + 1434835475 y5 %6 +
531264210 x5 y6 + 427467244 X3 Yo + 1374860777 x5 yo + 149117380 Xg yo + 1826680361 x5 + 969629736 x4 + 766694 650 x5 + 1666548268 x5,

y3 + 649714439 x5 x4 + 1076476457 X3 x5 + 1435812662 y4 y5 + 2053151093 yZ + 280374149 xZ + 1469939973 y4 yg + 1400337770 y5 ye + 1634063342 yZ +
354162717 yy + 737861553 y5 + 816931778 ye + 1428529698, x5 v + 1136639110 x4 y5 + 121108532 X5 y5 + 2127022098 y1 X0 + 701800649 y5 Xo +
1281723728 X3 ¥ + 2092528324 X3 Yo + 1816317333 x5 o + 1524717 023 x5 ys + 737364683 xa + 261 085 830 x4 + 712596842 x5 + 1219275979 Xg,

Va v# + 1382099903 x5 X4 + 1674451197 x5 X + 1964164303 v, ys + 610824582 yZ + 1726175807 xZ + 1045412838 y, v + 1328732288 ys yo + 1416893499 yZ +
509989107 y4 + 356562705 ys + 701591991 yg + 90791056, x4 yZ + 1125381690 x4 y5 + 343309511 x5 ys + 412315532 y1 x5 + 392837310 ys X6 +
1859774430 3 yo + 1289634195 x4 yo + 511405427 X5y + 2104680646 x5 Yo + 1304660656 x; + 1431387822 x4 + 2142663 821 x5 + 395031 648 xc}

14 / 38



» Do the computation modulo p =231 —1

{m+ 1727076644, + 1 073741823 x3 + y5 yo + 1073741823 y@ + 2147483458 y5 + 1073746572 , pmem + 1073741823 x + y4 yo + 1073741823 y 2 + 2147472199,

[ 1073741823 xZ + 1073741823 yZ + 420407 003 y + 2147476519 , ey + 1449935236 x4 ys + 87 139559 X5 ys + 821582392 y4 Xo +
534432936 y5 X6 + 2127 003394 X; Yo + 393 122455 X4 yo + 739525427 X5 yo + 1428199694 Xg g + 1318362776 x5 + 45332622 X4 + 1 666067743 x5 + 1402190174 x5,

B+ vZ + 2147483269 y5 + 2147462119, g + 1431835 485 x4 y's + 1585512332 x5 y5 + 2099455504 y4 Xg + 1274481640 y5 x6 + 1926461619 x5 ¥ + 1819204 411 x4 v +
2061309228 X5 Y + 1860755017 X Yo + 758308990 X5 + 504327305 X4 + 513732789 x5 + 1018326077 Xo, Wl + Vs Vs + 2147483458 y5 + 2147472715,

B+ 514418756 v s + 47332281 yZ + 1603064889 ys ys + 1508400303 ys ys + 591751051 yZ + 1072510925 , e + 125284848 x4 y5 + 1309508129 x5 y5 + 2016071 435y xo +
1654953235 y5 Xg + 1 839606594 X3 ys + 577627465 x4 Yo + 876148120 x5 yg + 335588542 x Yo + 2136682920 x3 + 1038483 051 x4 + 157778557 x5 + 540431639 xg,

- 204011627 x4 y5 + 839002279 x5 ys5 + 368180718 y4 X + 1 641249205 y5 xg + 430135887 x3 ye + 486556477 x4 v + 1706891994 x5 v + 83415671 X6 v + 123469149 x5 +
554422930 x4 + 1257780688 x5 + 1936702634 x;, [l + 1603064891 y, ys + 2100151353 yZ + 544418758 y4 yo + 639083344 y5 yg + 1555732596 yZ + 1074934 697,

B+ 1527353090, [+ 72446234 x3 x4 + 191 839850 x3 X5 + 1293615 843 y, v5 + 2115905836 yZ + 158590087 xZ + 808924606 y4 v + 345043470 ys ye + 57464572 yZ +
1051760435 v, + 458639039 ys + 890226333 ys + 306458357, [N + 1202942319 x, s + BIL 621123 x5 y5 + 694981073 v, Xo + 1268149853 ys x5 +
566843284 x5 5 + 1579449712 x5 yo + 2096672325 x5 yo + 217935702 xp y + 1838771945 x5 + 1574100689 x, + BIOT11 649 x5 + 527754 025 x5,

B - 1397298562 x5 x4 + 1093626759 x3 x5 + 1874498615 v, ys + 410806791 y2 + 34715881 x? + 1602680419 v ys + 1365806073 ys5 ye + 1574368257 y& +
1986672592 y4 + 1454700418 y5 + 207782012 yg + 817238271, [ + 906551 028 x, y5 + 2088326233 x5 y5 + 9BI660499 y4 xg + 2020744231 y5 Xg + 438982960 X3 ¥ +
105460105 x4 g + 1791795415 X5 ¥ + 752 681903 x5 ¥ + 1243232341 X3 + 236567207 x4 + 2039336085 x5 + 204724127 x, [+ 1798033564 x3 x4 + 1368970181 x5 x5 +
2111288438 y, ys + 2116525 809 yZ + 631579871 xf + 2098374939 ys yo + 14559548 y5 yo + 265925976 yZ + 768097244 y,4 + 197849421 y5 + 1272087803 ys + 1 50925261 ,

[ + 2000108329 x; ys + 138882411 x5 y5 + 1964621 B82 y4 xg + 1562649152 ys5 xg + 274800980 x3 yis + 381168929 x4 y6 + 1561 080504 x5 v + 646135501 x5 v +
12520241999 x5 + 1 B28948462 x4 + 1907059409 x5 + 1062676925 xo , [N + 1 910064434 x4 y5 + 1699323466 X5 y5 + 2767389 y4 X6 + 309430653 y5 Xo +
1746152111 x3 g + 1486922955 x4 y6 + 1042873400 x5 yg + 1877302158 X Y6 + BIBBGT 598 x3 + 2023749908 x4 + 1369459334 x5 + 1937 240806 X5,

B + 1859350309 x; x4 + 828165967 X3 X5 + 1319416 915 v, 5 + 1281531769 yZ + 416445396 x2 + 555896 977 v, v + 838162654 ys v + 1094699319 yZ +
1025635396 4 + 758820774 y5 + 1932663106 ye + 902372666 , pmmmmmmm + 1776737250 x4 y5 + 1335234339 x5 5 + 197 659465 v xo + 388691694 y5 xg +
1214819713 x5 yo + 1 236939013 x4 yo + 1895 585006 x5 yo + 1457663787 x5 v + 1 0BB24636 x5 + 1937866443 x4 + 906541 898 x5 + 1779256072 xo,

— + 392800087 x; ys + 43314235 x5 y5 + 1752015765 y4 Xg + 697 637736 ys Xg + 1174862 040 x3 yg + 1726470482 x4 v + 524280549 x5 ye + 1783594194 x5 y6 +
777027038 x5 + 1196924612 x4 + 669351 278 x5 + 136564 514 xo, [ + 769157270 x5 x4 + 30129177 x5 x5 + 147541859 y4 ys + 696342885 y# + 953052903 x7 + 63094058 vy ye +
1607776536 s Yo + 2003959420 y§ + 1657122998y + 1041341 194 y5 + 643362090 yg + 298205040, mummmmmem + 1 361 368571 x4y + 443 005480 x5 y5 + 749246637 y4 x5 +
556781711 5 Xg + 268588566 X3 Y6 + 179323388 x4 v + 260672145 X5 Y + 542761427 x5y + 2031 B14241 x5 + 112806238 X4 + 2024966158 x5 + 1634 398696 X5,

— 1495723262 %5 x4 + 1150552515 X3 x5 + 647627 904 v, ys + 834052394 yZ + 680400990 xZ + 703082161 y4 Y + 1261907 610 y5 ys + 1 146980666 yZ +
339024153 v, + 1829077 048 y5 + 1 120614065y + 420646716 , pmmmmmmem + 391769202 x, ys + 1778622432 x5 y5 + 32574434 ys x5 + 638884222 y5 x6 +
2008976092 x3 y + 1158838637 x4 ye + 298082231 X5 ye + 579017 100 X Y5 + 541015847 x3 + 1347513279 x4 + 1774560872 x5 + 1614705109 X,

mm— - 1581 681 716 X3 x5 + 486946881 x3 x5 + 421 622009 y4 y5 + 1075313 850 yZ + 1564800523 xZ + 198951616 y.4 y6 + 1466002977 ys yo + 932669036 yZ + 248319512 y4 +
862020011 y5 + 649537600 yo + 815933435, mmmmmmmmy + 1 343545648 x; x4 + 1023 324514 x5 x5 + 40371239 y4 y5 + 1905269341 y7 + 1639954889 xZ + 786545101 y4 yo +
1219192433 y5 yo + 321512152 y¢ + 1631897898 v, + 850776521 y5 + 530499711 yg + 2036743747, [l + 1359379754 x, y5 + 4699239 x5 y5 + 1446967796 ys X +
260472488 y5 x5 + 701675423 x5 5 + 1889155319 x, yo + 112548169 x5 yo + 1629096917 x5 yg + B58508665 x5 + 820850436 x4 + 665336977 x5 + 1707 190979 x5,

[ - 1013046601 x5 x; + 969596453 x5 x5 + 1553889292 v, y5 + 1185309841 y7 + 1987921573 x¢ + 1033458441 y4 ye + 1320068753 ys yo + 1102491211 y2 +
1104911459 y, + 1375116864 ys + 672833739 yg + 626376074, [ + 2009134 087 x5 x4 + 1611713763 x5 x5 + 168461479 y4 ys + 1706153267 yZ +
1769015690 x¢ + 1182579576 ya Yo + 557864255 ys s + 503714063 y¢ + 176291393 ys + 1354085871 ys + 954347026 yg + 734410570,

TN -+ 619010252 x, 5 + 916121455 x5 ys + 1431371638 v X + 969212309 y5 X + 1919990023 X5 Y + 414782496 x4 Yo + 1907745509 x5 v + 970368126 X5 s +
1740320236 x5 + 1 975330810 x, + 2143293978 x5 + 252311 982 x;, mmmmmmmm + 558167 487 x4 y5 + 433016430 x5 y5 + 2075138717 v xo + 1434835475 y5 %6 +
531264210 x3 yg + 427467244 x4 yg + 1374860777 x5 ys + 149117380 xg ys + 1826680361 x3 + 969629736 x4 + 766694 650 x5 + 1666548268 xg,

B+ 619714439 x5 x4 + 1076476457 x5 X5 + 1435812662 y4 ys + 2053151093 y# + 280374149 xZ + 1469939973 y4 yo + 1400337770 ys yo + 1 634063342 y& +
354162717 y4 + 737861553 y5 + B16931778 ye + 1426529696 , [ + 1136639110 x, ys + 121108582 X5 y5 + 2127022098 y4 X0 + 701800649 y5 X6 +
1281723728 X3 ¥ + 2092528324 X3 Yo + 1816317333 x5 o + 1524717 023 x5 ys + 737364683 xa + 261 085 830 x4 + 712596842 x5 + 1219275979 X5,

I - 1382099903 x5 x; + 1674451 197 x5 x5 + 1964164303 v, ys + 610824582 yZ + 1726175807 xZ + 1 045412838 v, vo + 1328732288 y5 v + 1416893499 yZ +
509989107 v, + 356562705 ys + 701591991 yg + 90791 056 , [ + 1125381690 x4 ys + 343309511 x5 ys + 412315532 y4 xg + 392837310 y5 x6 +
1859774430 x3 yo + 1289634195 x4 yo + 511405427 x5 y6 + 2104680646 x5 yo + 1304660656 x5 + 1431387822 x4 + 2142663821 x5 + 395031 648 ‘ﬁs)
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Determine the Number of Solutions

Leading monomials:

Y3

vi
$5y§
T5Y5Y6

2
YsTe

T5T6 T4T6
T4Y4 T3Y4
Yyays  Tayg
YaYsYe TaYs5Ye

YaysTe Yo

Tr3xg
o
$3y§
T3T5Y6

2
T5Y5

T3Y5 x% YaTs
x% yg xﬁyg
136 YsTeYs YaTeYs
T3T4Y6 x% y5x%

yay:  xay?

T4

Ysyg
2

Y5Ye6

Ya T
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Determine the Number of Solutions

Leading monomials:
Y3 T5Te  T4aTe  T3Te
2 2
Yy T4Ys  T3Ys - TY

2 2 2 2
T5Yg YalYs T4Y6 T3Ys

TsYsYe Y4YsYe TalYsYe T3Ts5Ye

Y2T6  YaysTe Yo T5y2

Monomials under the staircase:

1 Y6 Z6 Ys
yg T6Y6 YsYe T5Y6
Ys5Te YaZe y% T5Ys5

— 24 complex solutions.

Z3Ys
a3

2
TgYe
T3T4Y6

Yay?

Ts5
YalYe
YaYs

x% YaTs  T4Ts
Ye TeYs  Ysys
Y5T6Y6 Y4TeYo 3/52,.%
x% y5x% y433(2a
$4y§
Ya T4 T3
2

TaYe T3Ye Tg

T4Ys5 X35 X3%4
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Laman Numbers

All but one m.r. graphs with 6 vertices have Laman number 16.

X
0
A <>

A4
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Laman Numbers

All but one m.r. graphs with 6 vertices have Laman number 16.

The only exception is the three-prism graph with Lam (M) = 24.

A4

16 /38



Laman Number as Degree
Recall: For each edge {u,v} € E we get an equation

2

(l‘u - l‘y) + (yu - yv)2 = )‘(uv U)Q'
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Laman Number as Degree
Recall: For each edge {u,v} € E we get an equation

2 2

(xu - xv) + (yu - yv)2 = )‘(uv U) .

Idea: Lam(G) is obtained as the degree of the map
fa: €V x ¢V = CF,

(T1ye ey Ty YLy e o vy Yn) > ((azu — xU)Z + (Yu — yv)2){uw}€E
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Laman Number as Degree
Recall: For each edge {u,v} € E we get an equation

2 2

(xu - xv) + (yu - yv)2 = )‘(uv U) .

Idea: Lam(G) is obtained as the degree of the map
fa: €V x ¢V = CF,

(T1ye ey Ty YLy e o vy Yn) > ((azu — xU)Z + (Yu — yv)Z){uﬂ,}eE

i.e., by the number how often a generic (A(u, v)){u vyen € CcF

is hit by the map fg (modulo translations and rotations).
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Laman Number as Degree
Recall: For each edge {u,v} € E we get an equation

2

(xu - xv) + (yu - yv)2 = )‘(uv U)Q'

Idea: Lam(G) is obtained as the degree of the map
fa: €V x ¢V = CF,

(T1ye ey Ty YLy e o vy Yn) > ((azu — :1:1,)2 + (Yu — yv)Z){u,U}eE

i.e., by the number how often a generic (A(u, v)){u vyen € CcF

is hit by the map fg (modulo translations and rotations).

Strategy: Apply methods from algebraic geometry.
» Work in projective space.

» fi then should be a homogeneous map.

17 /38



Laman Number as Degree

Apply a change of variables to the map fg:

(l'u - 1‘1})2 + (yu - yv)2 =
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Laman Number as Degree

Apply a change of variables to the map fg:
(l'u - l'v)2 + (yu - yv)2 =

(20 = 20) +1(Yu = v0)) - ((Tu — 20) = i(yu — ) =
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Laman Number as Degree
Apply a change of variables to the map fg:
(2u = 20)? + (yu — y0)* =
(@0 = 20) +i(ya —30)) - (Tu — 20) = i(Yu — y0)) =

((xu + iyu) — (T + iyv)) ’ ((xu — iyy) — (20 — iyv))
\ \: \ \

Ly Ly Yu Yo
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Laman Number as Degree
Apply a change of variables to the map fg:
(2u = 20)? + (yu — y0)* =
(@0 = 20) +i(ya —30)) - (Tu — 20) = i(Yu — y0)) =

((xu + iyu) — (T + iyv)) ’ ((xu — iyy) — (20 — iyv))
\ \: \ \

Ty Ty Yu Yo

Hence our map becomes

fa: C©V x vV - CF,
<1‘17 s Tns Yt - 7y’fl) = ((HJU B xv) ’ (yu o yv)){u,U}EE

18 /38



Laman Number as Degree
Handle translations and rotations:
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Laman Number as Degree
Handle translations and rotations:
> Move one vertex to the origin (for each connected component).
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» Fix the length of one edge (again, by projectivization).
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Laman Number as Degree
Handle translations and rotations:
> Move one vertex to the origin (for each connected component).
» Fix the position of another vertex (using projective space P).
» Fix the length of one edge (again, by projectivization).

Define Comp(G), the set of connected components of a graph G,
Comp(G) := {C CV | C is a connected component of G}.
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Laman Number as Degree
Handle translations and rotations:
> Move one vertex to the origin (for each connected component).
» Fix the position of another vertex (using projective space P).
» Fix the length of one edge (again, by projectivization).
Define Comp(G), the set of connected components of a graph G,
Comp(G) := {C CV | C is a connected component of G}.
Let
- 1%
La = ((xo)) oy | € € Comp(G)) C €V,

where x¢(v) is 1 if v € C' and 0 otherwise.
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Laman Number as Degree
Handle translations and rotations:
> Move one vertex to the origin (for each connected component).
» Fix the position of another vertex (using projective space P).
» Fix the length of one edge (again, by projectivization).

Define Comp(G), the set of connected components of a graph G,

Comp(G) := {C CV | C is a connected component of G}.

Let
La = ((xc(v) oy | € € Comp(@)) € T,

where x¢(v) is 1 if v € C' and 0 otherwise.

Proposition: The Laman number Lam(G) of G = (V, E) is given
by the degree of the map
fa: P(CV ) Lg) x P(CY ) Lg) — PIEI-L,

[(xv)ve\/]a [(QU)UGV] = ((:L'U - mv) ’ (yu - y”)){u,v}eE
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Laman Number as Degree
Handle translations and rotations:
» Move one vertex to the origin (for each connected component).
» Fix the position of another vertex (using projective space IP).
» Fix the length of one edge (again, by projectivization).

Define Comp(G), the set of connected components of a graph G,

Comp(G) := {C CV | C is a connected component of G}.

Let
La = ((xc(v) oy | € € Comp(@)) € T,

where x¢(v) is 1 if v € C' and 0 otherwise.

Proposition: The Laman number Lam(G) of G = (V, E) is given
by the degree of the map
fa: P(CY ) Lg) x P(CY ) Lg) — PIEI-L

[(xv)UGVL [(yv)UGV] = ((:L‘u - xv) ’ (yu - yv)){u,v}eE
19/ 38



Bigraphs

Definition: A bigraph B = (G, H) is a pair of graphs G = (V,€)
and H = (W, ), allowing several components, multiple edges and
self-loops. The set £ is called the set of biedges.
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Bigraphs

Definition: A bigraph B = (G, H) is a pair of graphs G = (V,€)
and H = (W, ), allowing several components, multiple edges and
self-loops. The set £ is called the set of biedges.

We define the corresponding map fp for a bigraph:
fe: P(CY/Lg) x P(CV/ Ly) — PIEITY
[(l'v)veV}a [(yw)wGW] — ((xu - l"u) : (yt - yw))eeg

where {u,v} C V are the vertices to which e is connected in G,
and for {t,w} C W analogously.
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Bigraphs

Definition: A bigraph B = (G, H) is a pair of graphs G = (V,€)
and H = (W, ), allowing several components, multiple edges and
self-loops. The set £ is called the set of biedges.

We define the corresponding map fp for a bigraph:
fe: P(CY/Lg) x P(CV/ Ly) — PIEITY
[(l'v)veV}a [(yw)wGW] — ((xu - l"u) : (yt - yw))eeg

where {u,v} C V are the vertices to which e is connected in G,
and for {t,w} C W analogously.

Definition: The Laman number Lam(B) of a bigraph B is
defined to be deg(fB).
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Bigraphs

Definition: A bigraph B = (G, H) is a pair of graphs G = (V,€)
and H = (W, ), allowing several components, multiple edges and
self-loops. The set £ is called the set of biedges.

We define the corresponding map fp for a bigraph:
fe: P(CY/Lg) x P(CV/ Ly) — PIEITY
[(l'v)veV}a [(yw)wGW] — ((xu - l"u) : (yt - yw))eeg

where {u,v} C V are the vertices to which e is connected in G,
and for {t,w} C W analogously.

Definition: The Laman number Lam(B) of a bigraph B is
defined to be deg(fB).

Proposition: For B = (G, G) we have Lam(B) = Lam(G).
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Counting via Bidistances

> Introduce a new parameter s and work over the field C{{s}}
of Puiseux series.
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> Introduce a new parameter s and work over the field C{{s}}
of Puiseux series.

» Study the preimage of a “perturbed” point A.s"(®)
for some weight vector wt € QF.
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Counting via Bidistances

> Introduce a new parameter s and work over the field C{{s}}
of Puiseux series.

» Study the preimage of a “perturbed” point A.s"(®)
for some weight vector wt € QF.

» Apply tropicalization: Let dy (resp. dyy) be the valuations of
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Counting via Bidistances

Introduce a new parameter s and work over the field C{{s}}
of Puiseux series.

Study the preimage of a “perturbed” point A.s"t(¢)
for some weight vector wt € QF.

Apply tropicalization: Let dy (resp. dy) be the valuations of
the z- (resp. y-) coordinates in the preimage of A.s"(¢).

The pair (dy, dyw) is called a bidistance.

For a general weight vector wt, all bidistances are different.
Hence Lam(B) equals the number of such bidistances.

We choose the special weight vector (1,...,1). In this case
the values of dy and dy are restricted to 0 and 1.

Each bidistance can be characterized by a single 0/1-vector.
The set of preimages is partitioned w.r.t. the bidistances:

Lam(B) = ZLam(Bd).
d
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Puiseux Series

» K = C{{s}}: field of Puiseux series with coefficients in C
» This field comes with a valuation v: K\ {0} — Q:

+o0o ./ k
7 v = — if )
V(izgkc S > - if e, #0

i.e., the order of a Puiseux series.
» v(a-b) =v(a)+v(b) and v(a+ b) > min{v(a),v(b)}
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For the map fpk: IP](R") X IP](I{) — IPE_I, obtained as the
extension of scalars from fg, we have deg(fpx) = deg(fR).
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Puiseux Series

» K = C{{s}}: field of Puiseux series with coefficients in C
» This field comes with a valuation v: K\ {0} — Q:

+o0o ./ k
7 v = — if )
V(izgkc S > - if e, #0

i.e., the order of a Puiseux series.
» v(a-b) =v(a)+v(b) and v(a+ b) > min{v(a),v(b)}

For the map fpk: IP](R") X IP](I{) — IPE_I, obtained as the
extension of scalars from fg, we have deg(fpx) = deg(fR).

Study the preimage of a “perturbed” point in ]P]E'*l:

fgy&(()\es‘”t(e))eeg) for some wt € QF and \ € C¥,

instead of studying the preimage f5'(p) for some p € ]P!g‘_l,
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New Coordinates, New Equations

Introduce new coordinates
> 1, for all u,v € V that are connected by an edge in G
> 1y, for all t,w € W that are connected by an edge in H
— They correspond to the factors (z, — ) resp. (y¢ — Yw)-
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New Coordinates, New Equations

Introduce new coordinates
> 1, for all u,v € V that are connected by an edge in G
> 1y, for all t,w € W that are connected by an edge in H
— They correspond to the factors (z, — ) resp. (y¢ — Yw)-

Select a distinguished biedge € € £. Then these coordinates satisfy
the system of equations:

Tap = Ypp = 1
Tuw Yrw = Aes™ @ foralle e &)\ {&}

Z(g Tyo = 0 for all cycles ¥ in G
Z@ Ytw =0 for all cycles & in H
In particular, Ty = —Zqy.
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Tropicalization

|€]-1
K

Goal: For a fixed point p = (A sWt(e))eeg elP we want to

determine its preimages fng(p).
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Goal: For a fixed point p = (A sWt(e))eeg € ]P%Ii‘*l we want to
determine its preimages fg}K(p).

Idea:

» Apply tropicalization: look only at the valuations!

» An algebraic relation between Puiseux series implies a
piecewise linear relation between their orders.

> For g € fp(p) let dy(u,v) = v(qa,,), dw(t,w) = v(ay,,)-

» This way we obtain a discrete object, a pair of functions
(dy,dw), that we call bidistance.
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Tropicalization

Goal: For a fixed point p = (Ae sWt(e))eeg € ]P%g*1 we want to
determine its preimages fg}K(p).

Idea:

» Apply tropicalization: look only at the valuations!

» An algebraic relation between Puiseux series implies a
piecewise linear relation between their orders.

> For g € fp(p) let dy(u,v) = v(qa,,), dw(t,w) = v(ay,,)-

» This way we obtain a discrete object, a pair of functions
(dy,dw), that we call bidistance.

Gain: We can then partition the set fgﬁK(p) according to the
bidistances that are determined by its elements.
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Bidistances

The functions dy and dyy satisfy
> dy(u,v) = dy(v,u) for all (u,v), and similarly for dy,
> dy(u,v) + dw(t,w) = wt(e) for all e € £\ {e}
> dy(u,v) = dw(t,w) =0
> for every cycle % in GG, the minimum of the values of dy on

the pairs of vertices (u,v) appearing in € is attained at least
twice, and similarly for dyy.

Definition: Every pair of functions (dy, dyy) satisfying the above
conditions is called a bidistance compatible with wt € QI€I-1
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Recursion for the Laman number
Idea: We partition the set fng(p) according to the bidistances.

Lemma: The number of preimages sharing the same bidistance d
can be obtained as the Laman number of a “simpler” Graph By.

Hence we obtain the following recursion:
Theorem:
Lam(B) = ZLam(Bd).
d
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Recursion for the Laman number
Idea: We partition the set j‘EjK(p) according to the bidistances.

Lemma: The number of preimages sharing the same bidistance d
can be obtained as the Laman number of a “simpler” Graph By.

Hence we obtain the following recursion:
Theorem:
Lam(B) = ZLam(Bd).
d
Unfortunately, it is not very useful for practical purposes:
1. Enumeration of bidistances d: difficult
2. Computation of Lam(By): difficult

Two specializations in order to get more explicit formulas. ..

26 / 38



First Strategy

By choosing a general weight vector wt € Q/€I=1 one can show
that Lam(B;) = 1 for every bidistance d compatible with wt.

Hence Lam(B) equals the number of such bidistances.
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First Strategy

By choosing a general weight vector wt € Q/€I=1 one can show
that Lam(By) = 1 for every bidistance d compatible with wt.

Hence Lam(B) equals the number of such bidistances.

The computation of Lam(B) is therefore reduced to a piecewise
linear problem:

1. Enumeration of bidistances d: difficult

2. Computation of Lam(By): trivial
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Second Strategy

Idea: We choose the special weight vector (1,...,1) € QI€I=1,

We can show that in this case the values of dy and dyy are
> integers

> moreover: only the values 0 and 1 can occur.
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Second Strategy

Idea: We choose the special weight vector (1,...,1) € QI€I=1,

We can show that in this case the values of dy and dyy are
> integers

> moreover: only the values 0 and 1 can occur.

Hence, each bidistance can be characterized by a single vector in
{0, 1}€1=1 (since dy + dy =1 for all e € £\ {&}).

1. Enumeration of bidistances d: easy

2. Computation of Lam(By): feasible
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Operations on Graphs

For constructing the graph B, we need to introduce two
operations on graphs:

» complement

> quotient
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Graph Complement
Let G = (V,E) be a graph and let E' C E.

Definition: The graph complement G \ E’ is defined as

G\ E :=(V,E\ E).
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Graph Quotient
Let G = (V,E) be a graph and let E' C E.

Definition: The graph quotient G/ E’ is constructed as follows:

» Connected components of (V, E’) become vertices of G / E’.

» Each edge in E'\ E’ induces an edge of G / E'.
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Graph Quotient
Let G = (V,E) be a graph and let E' C E.

Definition: The graph quotient G/ E’ is constructed as follows:
» Connected components of (V, E’) become vertices of G / E’.
» Each edge in E'\ E’ induces an edge of G / E'.

Example:
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Operations on Bigraphs
We define the following two operations on a bigraph B = (G, H):
For a subset M C & of the biedges &£ let
» MB = (G /M, H\M)
» BM .= (G\M, H/ M)
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» MB = (G /M, H\M)
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Operations on Bigraphs

We define the following two operations on a bigraph B = (G, H):
For a subset M C & of the biedges &£ let

» MB = (G /M, H\M)
» BM .= (G\M, H/ M)

N\l

B=(G,H) MCE The bigraph BM
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The Combinatorial Algorithm

Theorem. Let B = (G, H) be a bigraph with G = (V,€) and
H = (W,&). Choose € € £. Then

Lam(B) = Lam (¥*}B) + Lam (B{*})+
Z Lam(MB) - Lam(BN).
MUN=E
MNN={e}
Initial conditions:
Lam(G) = Lam(G, G)
> Lam(B) = 0 if G or H contains a loop.
> Lam(B) = 0 if [V] — | Comp(G)| + [W| — | Comp(H)| # [€] + 1.
am(B) =

v

B) =1if |£] =1 and if there are no loops.
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Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which
one has the largest number of realizations?
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Question: Among all minimally rigid graphs with n vertices, which
one has the largest number of realizations?

n|6]7]8]9]10
4 | 24| 56 | 136 | 344 | 880
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Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which
one has the largest number of realizations?

n|6|7]8]9[10]11
# | 24| 56| 136 | 344 | 880 | 2288
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Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which
one has the largest number of realizations?

n|6|7[8]9[10] 11|12
# | 24| 56| 136 | 344 | 880 | 2288 | 6180

34/ 38



Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which
one has the largest number of realizations?

n|6|7[8 ]9 |10]11[12] | 18
# |24 | 56136 | 344 | 880 | 2288 | 6180 | ... | > 1953316

34/ 38



Caterpillar Construction

» Choose a m.r. graph G = (V, E) (e.g.: three-prism graph).
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» Choose a m.r. graph G = (V, E) (e.g.: three-prism graph).
» Place k copies of G and connect them with shared edges.
» One gets 2+ k- (|]V| —2) vertices and 1 + k- (|E| — 1) edges.
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Caterpillar Construction

Choose a m.r. graph G = (V, E) (e.g.: three-prism graph).
Place k copies of G and connect them with shared edges.
One gets 2+ k- (|V| —2) vertices and 1 + k- (|E| — 1) edges.

The resulting graph has Laman number Lam(G)*.
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Hence, for any minimally rigid graph G and n > 2,
there exists an n-vertex graph with realizations at least

Lam(G)L=2/(VI-2)]
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Caterpillar Construction

Choose a m.r. graph G = (V, E) (e.g.: three-prism graph).
Place k copies of G and connect them with shared edges.

vV v vV

The resulting graph has Laman number Lam(G)*.

Hence, for any minimally rigid graph G and n > 2,
there exists an n-vertex graph with realizations at least

9(n=2) mod (IVI=2) . o () Ln=2)/(VI=2)]

Growth rate using the three-prism graph: 24™/4 ~ 2.21336".

One gets 2+ k- (|V| —2) vertices and 1 + k- (|E| — 1) edges.
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Fan Construction

» Choose a m.r. graph G = (V, E) containing a triangle H.
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» Choose a m.r. graph G = (V, E) containing a triangle H.
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Fan Construction

Choose a m.r. graph G = (V, E)) containing a triangle H.
Place k copies of G sharing this triangle H = (W, F).

One gets 3+ k- (|V| — 3) vertices and 3+ k- (|E| — 3) edges.

Resulting graph has Laman number 2 - (Lam(G)/2)k.
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Fan Construction

Choose a m.r. graph G = (V, E)) containing a triangle H.
Place k copies of G sharing this triangle H = (W, F).

One gets 3+ k- (|V| — 3) vertices and 3+ k- (|E| — 3) edges.
Resulting graph has Laman number 2 - (Lam(G)/2)k.

Hence, for any minimally rigid graph G and n > 3,

there exists an n-vertex graph with realizations at least

. (Lan;(@)um)/uwan
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Fan Construction

Choose a m.r. graph G = (V, E)) containing a triangle H.
Place k copies of G sharing this triangle H = (W, F).

One gets 3+ k- (|V| — 3) vertices and 3+ k- (|E| — 3) edges.
Resulting graph has Laman number 2 - (Lam(G)/2)k.

Hence, for any minimally rigid graph G and n > 3,

there exists an n-vertex graph with realizations at least
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Fan Construction

Choose a m.r. graph G = (V, E)) containing a triangle H.
Place k copies of G sharing this triangle H = (W, F).

vV v vYy

Resulting graph has Laman number 2 - (Lam(G)/2)k.
Hence, for any minimally rigid graph G and n > 3,
there exists an n-vertex graph with realizations at least

2(n73) mod (|V]-3) 2. (Larn(G))L(ng)/('V'B)J
2

Growth rate using the three-prism graph: 12"/3 ~ 2.28943".

One gets 3+ k- (|V| — 3) vertices and 3+ k- (|E| — 3) edges.
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Fan Construction

Choose a m.r. graph G = (V, E) containing a subgraph H.
Place k copies of G sharing this m.r. subgraph H = (W, F).
[W|+Ek- (V]| —|W|) vertices and |F|+ k- (|E| — | F|) edges.
Resulting graph: Lam > Lam(H) - (Lam(G)/Lam(H))k.
Hence, for any minimally rigid graph G and n > ||,

there exists an n-vertex graph with realizations at least
)L(nIWI)/(IVIW)J

vV v vYy

Qn=IW ) mod (VI=IWD) . [ (FT) - (LamEG;
Lam(H
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2.5 1

2.4

2.3 1

2.2 4

Growth Rates

red = caterpillar
blue = triangle-fan
green = Hi-fan
purple = Hs-fan
brown = Hs-fan

o A

8§ 9 10 11 12 13 14 15 16 17 18 "
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Real realizations

Question: Given a m.r. graph G, can we find a real labeling
A: E — Rsg such that there exist Lam(G) real embeddings?
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Question: Given a m.r. graph G, can we find a real labeling
A: E — Rsg such that there exist Lam(G) real embeddings?

Answer: Sometimes, but not always.

Example:

I
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