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Rigid and Non-Rigid Graphs
Notation: Let G = (V,E) be a graph, and let λ : E → R>0 be a
labeling of its edges, that is realizable (as lengths in R2).

Example: G = (V,E) with
V = {1, 2, 3, 4},
E = {{1, 2}, {2, 3},

{3, 4}, {1, 4}}
and
λ(1, 2) = λ(1, 4) = 0.75
λ(2, 3) = λ(3, 4) = 1

λ(2, 4) = 1

Definition: G is called rigid, if there
modulo rotations and translations, how it can be embedded
in the plane, when the edge lengths λ are given.
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Definition: G is called rigid, if there is exactly one way,
modulo rotations and translations, how it can be embedded
in the plane, when the edge lengths λ are given.
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Three-Prism Graph
Is this graph rigid?

Definition: G is called rigid, if there are only finitely many ways,
modulo rotations and translations, how it can be embedded
in the plane, when the edge lengths λ are given.
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Three-Prism Graph
Is this graph rigid? Yes!

Definition: G is called rigid, if there are only finitely many ways,
modulo rotations and translations, how it can be embedded
in the plane, when the edge lengths λ are given generically.

2 / 38



Minimally Rigid Graphs

Definition: A rigid graph G is called minimally rigid (or Laman)
if removing any single edge makes G non-rigid.

Question: When can we expect rigidity?
I # unknowns (coordinates of the vertices): 2 · |V |
I # constraints: |E|
I dim(direct isometries): 3
−→ Hence, |E| > 2|V | − 3 is a necessary condition for rigidity.

Theorem. (Geiringer 1927, Laman 1970)
A graph G = (V,E) is minimally rigid if and only if

1. |E| = 2|V | − 3,
2. |E′| 6 2|V ′| − 3 for each subgraph G′ = (V ′, E′) of G.
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Some Minimally Rigid Graphs
All minimally rigid graphs with 2 6 n 6 5 vertices:

n = 2:

n = 3:

n = 4:

n = 5:
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Some Minimally Rigid Graphs

All minimally rigid graphs with 6 vertices:
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Some Minimally Rigid Graphs
There are 70 minimally rigid graphs with 7 vertices:
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Enumeration of Minimally Rigid Graphs
Number of minimally rigid graphs with n vertices:

n #
2 1
3 1
4 1
5 3
6 13
7 70

8 608
9 7222
10 110132
11 2039273
12 44176717
13 1092493042
14 30322994747
15 932701249291
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Number of Realizations
Minimally rigid graph with 3 vertices: ?

2 realizations

Minimally rigid graph with 4 vertices: 4 realizations
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Realizations of H1 Graphs
Definition: An H1 graph is a minimally rigid graph that can be
obtained by successively connecting a new vertex with two existing
ones, starting with the graph

Number of realizations:
I Let G = (V,E) be an H1 graph.
I Fix a realizable labeling λ : E → R>0.
I Fix the positions of the first two vertices, respecting λ(1, 2).
I Each vertex that is added can be put at two different positions.
−→ There are 2|V |−2 realizations.

Definition: The Laman number Lam(G) of a minimally rigid
graph G is the number of realizations of G, for a generic realizable
labeling λ.
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Minimally Rigid Graphs that are not H1
Question: What about minimally rigid graphs that are not H1?

Set up a system of equations:
I Let (xv, yv) be the coordinates of vertex v.
I For {u, v} ∈ E:

(xu − xv)2 + (yu − yv)2 = λ(u, v)2.

Convention: From now on we work over the complex numbers:
I λ : E → C
I (xv, yv) ∈ C2
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Example: Three-Prism Graph

1 2

3

4 5

6

(x1 − x2)2 + (y1 − y2)2 = λ(1, 2)2

(x1 − x3)2 + (y1 − y3)2 = λ(1, 3)2

(x1 − x4)2 + (y1 − y4)2 = λ(1, 4)2

(x2 − x3)2 + (y2 − y3)2 = λ(2, 3)2

(x2 − x5)2 + (y2 − y5)2 = λ(2, 5)2

(x3 − x6)2 + (y3 − y6)2 = λ(3, 6)2

(x4 − x5)2 + (y4 − y5)2 = λ(4, 5)2

(x4 − x6)2 + (y4 − y6)2 = λ(4, 6)2

(x5 − x6)2 + (y5 − y6)2 = λ(5, 6)2

I Take care of translations: (x1, y1) = (0, 0)
I Take care of rotations: x2 = 0 and y2 > 0

Question: How many solutions does this system have?
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Gröbner Basis Approach
I Not feasible for symbolic parameters λ(i, j)

I Replace each λ(i, j) by a random integer
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I Do the computation modulo p = 231 − 1:
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Determine the Number of Solutions
Leading monomials:
y3 x5x6 x4x6 x3x6 x3y5 x2

5 y4x5 x4x5

y2
4 x4y4 x3y4 x2

4 x2
3 y3

6 x6y
2
6 y5y

2
6

x5y
2
6 y4y

2
6 x4y

2
6 x3y

2
6 x2

6y6 y5x6y6 y4x6y6 y2
5y6

x5y5y6 y4y5y6 x4y5y6 x3x5y6 x3x4y6 x3
6 y5x

2
6 y4x

2
6

y2
5x6 y4y5x6 y3

5 x5y
2
5 y4y

2
5 x4y

2
5

Monomials under the staircase:
1 y6 x6 y5 x5 y4 x4 x3

y2
6 x6y6 y5y6 x5y6 y4y6 x4y6 x3y6 x2

6

y5x6 y4x6 y2
5 x5y5 y4y5 x4y5 x3x5 x3x4

−→ 24 complex solutions.
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−→ 24 complex solutions.
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Laman Numbers

All but one m.r. graphs with 6 vertices have Laman number 16.

The only exception is the three-prism graph with Lam( ) = 24.
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Laman Number as Degree
Recall: For each edge {u, v} ∈ E we get an equation

(xu − xv)2 + (yu − yv)2 = λ(u, v)2.

Idea: Lam(G) is obtained as the degree of the map

fG : CV ×CV → CE ,

(x1, . . . , xn, y1, . . . , yn) 7→
(
(xu − xv)2 + (yu − yv)2

)
{u,v}∈E

i.e., by the number how often a generic
(
λ(u, v)

)
{u,v}∈E

∈ CE

is hit by the map fG (modulo translations and rotations).

Strategy: Apply methods from algebraic geometry.
I Work in projective space.
I fG then should be a homogeneous map.
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Laman Number as Degree
Apply a change of variables to the map fG:

(xu − xv)2 + (yu − yv)2 =

(
(xu − xv) + i(yu − yv)

)
·
(
(xu − xv)− i(yu − yv)

)
=(

(xu + iyu)︸ ︷︷ ︸
↓
xu

− (xv + iyv)︸ ︷︷ ︸
↓
xv

)
·
(
(xu − iyu)︸ ︷︷ ︸
↓
yu

− (xv − iyv)︸ ︷︷ ︸
↓
yv

)

Hence our map becomes

fG : CV ×CV → CE ,

(x1, . . . , xn, y1, . . . , yn) 7→
(
(xu − xv) · (yu − yv)

)
{u,v}∈E

18 / 38
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Laman Number as Degree
Handle translations and rotations:

I Move one vertex to the origin (for each connected component).
I Fix the position of another vertex (using projective space P).
I Fix the length of one edge (again, by projectivization).

Define Comp(G), the set of connected components of a graph G,
Comp(G) :=

{
C ⊆ V | C is a connected component of G

}
.

Let
LG :=

〈(
χC(v)

)
v∈V

∣∣∣ C ∈ Comp(G)
〉
⊆ CV ,

where χC(v) is 1 if v ∈ C and 0 otherwise.

Proposition: The Laman number Lam(G) of G = (V,E) is given
by the degree of the map

fG : P
(
CV /LG

)
×P

(
CV /LG

)
→ P|E|−1,[

(xv)v∈V

]
,
[
(yv)v∈V

]
7→
(
(xu − xv) · (yu − yv)

)
{u,v}∈E
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Bigraphs
Definition: A bigraph B = (G,H) is a pair of graphs G = (V, E)
and H = (W, E), allowing several components, multiple edges and
self-loops. The set E is called the set of biedges.

We define the corresponding map fB for a bigraph:

fB : P
(
CV /LG

)
×P

(
CW /LH

)
→ P|E|−1,[

(xv)v∈V

]
,
[
(yw)w∈W

]
7→
(
(xu − xv) · (yt − yw)

)
e∈E

where {u, v} ⊆ V are the vertices to which e is connected in G,
and for {t, w} ⊆W analogously.

Definition: The Laman number Lam(B) of a bigraph B is
defined to be deg(fB).

Proposition: For B = (G,G) we have Lam(B) = Lam(G).
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Counting via Bidistances
I Introduce a new parameter s and work over the field C{{s}}

of Puiseux series.

I Study the preimage of a “perturbed” point λes
wt(e)

for some weight vector wt ∈ QE .
I Apply tropicalization: Let dV (resp. dW ) be the valuations of

the x- (resp. y-) coordinates in the preimage of λes
wt(e).

I The pair (dV , dW ) is called a bidistance.
I For a general weight vector wt, all bidistances are different.

Hence Lam(B) equals the number of such bidistances.
I We choose the special weight vector (1, . . . , 1). In this case

the values of dV and dW are restricted to 0 and 1.
I Each bidistance can be characterized by a single 0/1-vector.
I The set of preimages is partitioned w.r.t. the bidistances:

Lam(B) =
∑

d

Lam(Bd). jump
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Puiseux Series
I K = C{{s}}: field of Puiseux series with coefficients in C
I This field comes with a valuation ν : K \ {0} −→ Q:

ν

(+∞∑
i=k

ci s
i/n
)

= k

n
if ck 6= 0,

i.e., the order of a Puiseux series.
I ν(a · b) = ν(a) + ν(b) and ν(a+ b) > min{ν(a), ν(b)}

For the map fB,K : P(... )
K
×P(... )

K
−→ P|E|−1

K
, obtained as the

extension of scalars from fB, we have deg(fB,K) = deg(fB).

Study the preimage of a “perturbed” point in P|E|−1
K

:

f−1
B,K

((
λes

wt(e))
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New Coordinates, New Equations
Introduce new coordinates

I xuv for all u, v ∈ V that are connected by an edge in G
I ytw for all t, w ∈W that are connected by an edge in H
−→ They correspond to the factors (xu − xv) resp. (yt − yw).

Select a distinguished biedge ē ∈ E . Then these coordinates satisfy
the system of equations:

xūv̄ = yt̄w̄ = 1
xuv ytw = λes

wt(e) for all e ∈ E \ {ē}∑
C
xuv = 0 for all cycles C in G∑

D
ytw = 0 for all cycles D in H

In particular, xuv = −xvu.
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Tropicalization

Goal: For a fixed point p =
(
λe s

wt(e))
e∈E ∈ P

|E|−1
K

we want to
determine its preimages f−1

B,K(p).

Idea:
I Apply tropicalization: look only at the valuations!
I An algebraic relation between Puiseux series implies a

piecewise linear relation between their orders.
I For q ∈ f−1

B,K(p) let dV (u, v) = ν(qxuv ), dW (t, w) = ν(qytw).
I This way we obtain a discrete object, a pair of functions

(dV , dW ), that we call bidistance.

Gain: We can then partition the set f−1
B,K(p) according to the

bidistances that are determined by its elements.
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Bidistances

The functions dV and dW satisfy
I dV (u, v) = dV (v, u) for all (u, v), and similarly for dW

I dV (u, v) + dW (t, w) = wt(e) for all e ∈ E \ {ē}
I dV (ū, v̄) = dW (t̄, w̄) = 0
I for every cycle C in G, the minimum of the values of dV on

the pairs of vertices (u, v) appearing in C is attained at least
twice, and similarly for dW .

Definition: Every pair of functions (dV , dW ) satisfying the above
conditions is called a bidistance compatible with wt ∈ Q|E|−1.
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Recursion for the Laman number
Idea: We partition the set f−1

B,K(p) according to the bidistances.

Lemma: The number of preimages sharing the same bidistance d
can be obtained as the Laman number of a “simpler” Graph Bd.

Hence we obtain the following recursion:
Theorem:

Lam(B) =
∑

d

Lam(Bd).

Unfortunately, it is not very useful for practical purposes:
1. Enumeration of bidistances d: difficult
2. Computation of Lam(Bd): difficult

Two specializations in order to get more explicit formulas. . .

26 / 38



Recursion for the Laman number
Idea: We partition the set f−1

B,K(p) according to the bidistances.

Lemma: The number of preimages sharing the same bidistance d
can be obtained as the Laman number of a “simpler” Graph Bd.

Hence we obtain the following recursion:
Theorem:

Lam(B) =
∑

d

Lam(Bd).

Unfortunately, it is not very useful for practical purposes:
1. Enumeration of bidistances d: difficult
2. Computation of Lam(Bd): difficult

Two specializations in order to get more explicit formulas. . .

26 / 38



First Strategy

By choosing a general weight vector wt ∈ Q|E|−1, one can show
that Lam(Bd) = 1 for every bidistance d compatible with wt.

Hence Lam(B) equals the number of such bidistances.

The computation of Lam(B) is therefore reduced to a piecewise
linear problem:

1. Enumeration of bidistances d: difficult
2. Computation of Lam(Bd): trivial
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Second Strategy

Idea: We choose the special weight vector (1, . . . , 1) ∈ Q|E|−1.

We can show that in this case the values of dV and dW are
I integers
I moreover: only the values 0 and 1 can occur.

Hence, each bidistance can be characterized by a single vector in
{0, 1}|E|−1 (since dV + dW = 1 for all e ∈ E \ {ē}).

1. Enumeration of bidistances d: easy
2. Computation of Lam(Bd): feasible
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1. Enumeration of bidistances d: easy
2. Computation of Lam(Bd): feasible

28 / 38



Operations on Graphs

For constructing the graph Bd, we need to introduce two
operations on graphs:

I complement
I quotient

29 / 38



Graph Complement
Let G = (V,E) be a graph and let E′ ⊆ E.

Definition: The graph complement G \ E′ is defined as

G \ E′ := (V,E \ E′).

Example:
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Graph Quotient
Let G = (V,E) be a graph and let E′ ⊆ E.

Definition: The graph quotient G/E′ is constructed as follows:
I Connected components of (V,E′) become vertices of G/E′.
I Each edge in E \ E′ induces an edge of G/E′.

Example:
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Operations on Bigraphs
We define the following two operations on a bigraph B = (G,H):
For a subset M⊆ E of the biedges E let

I MB :=
(
G/M, H \M

)
I BM :=

(
G \M, H /M

)

G =

H =

B = (G,H)

M⊆ E
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The Combinatorial Algorithm

Theorem. Let B = (G,H) be a bigraph with G = (V, E) and
H = (W, E). Choose ē ∈ E . Then

Lam(B) = Lam
({ē}B)+ Lam

(
B{ē}

)
+∑

M∪N=E
M∩N={ē}

Lam
(MB) · Lam

(
BN

)
.

Initial conditions:
I Lam(G) = Lam(G,G)
I Lam(B) = 0 if G or H contains a loop.
I Lam(B) = 0 if |V | − |Comp(G)|+ |W | − |Comp(H)| 6= |E|+ 1.
I Lam(B) = 1 if |E| = 1 and if there are no loops.
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Minimally Rigid Graphs with Most Realizations
Question: Among all minimally rigid graphs with n vertices, which
one has the largest number of realizations?

n 6 7 8 9 10 11 12 18
# 24 56 136 344 880 2288 6180 . . . > 1953816
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Caterpillar Construction

I Choose a m.r. graph G = (V,E) (e.g.: three-prism graph).

I Place k copies of G and connect them with shared edges.
I One gets 2 + k · (|V | − 2) vertices and 1 + k · (|E| − 1) edges.
I The resulting graph has Laman number Lam(G)k.

Hence, for any minimally rigid graph G and n > 2,
there exists an n-vertex graph with realizations at least

2(n−2) mod (|V |−2) ·

Lam(G)b(n−2)/(|V |−2)c.

Growth rate using the three-prism graph: 24n/4 ≈ 2.21336n.
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Fan Construction

I Choose a m.r. graph G = (V,E) containing a triangle H.

I Place k copies of G sharing this triangle H = (W,F ).
I One gets 3 + k · (|V | − 3) vertices and 3 + k · (|E| − 3) edges.
I Resulting graph has Laman number 2 ·

(
Lam(G)/2

)k.
Hence, for any minimally rigid graph G and n > 3,
there exists an n-vertex graph with realizations at least

2(n−3) mod (|V |−3) ·

2 ·
(Lam(G)

2

)b(n−3)/(|V |−3)c

2(n−|W |) mod (|V |−|W |) · Lam(H) ·
(Lam(G)

Lam(H)

)b(n−|W |)/(|V |−|W |)c

Growth rate using the three-prism graph: 12n/3 ≈ 2.28943n.
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I One gets 3 + k · (|V | − 3) vertices and 3 + k · (|E| − 3) edges.
I Resulting graph has Laman number 2 ·

(
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Fan Construction

I Choose a m.r. graph G = (V,E) containing a subgraph H.
I Place k copies of G sharing this m.r. subgraph H = (W,F ).
I |W |+ k · (|V | − |W |) vertices and |F |+ k · (|E| − |F |) edges.
I Resulting graph: Lam > Lam(H) ·

(
Lam(G)/Lam(H)

)k.
Hence, for any minimally rigid graph G and n > |W |,
there exists an n-vertex graph with realizations at least
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Growth Rates

n
2.2

2.3

2.4

2.5

6 7 8 9 10 11 12 13 14 15 16 17 18

red = caterpillar
blue = triangle-fan
green = H1-fan
purple = H2-fan
brown = H3-fan
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Real realizations
Question: Given a m.r. graph G, can we find a real labeling
λ : E → R>0 such that there exist Lam(G) real embeddings?

Answer: Sometimes, but not always.

Example:
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