On automating triangle constructions in absolute and hyperbolic geometry

Vesna Marinković, Tijana Šukilović, Filip Marić

Faculty of Mathematics, University of Belgrade, Serbia

ADG 15. 9. 2021.

Solving ruler and compass construction problems

- ▶ One of the most studied problems in mathematical education
- ► Task: to describe a construction of geometrical figure which satisfies given set of constraints
 - " construct $\triangle ABC$ given α , β and |AB|"
- Constructions are procedures
- ► Some instances are unsolvable (e.g. angle trisection)

Different geometries

- ► Many different geometries exist
- ► Absolute geometry is based on four groups of axioms: incidence, order, congruence, and continuity
- ▶ By adding the appropriate axiom of parallelism, we get either Euclidean geometry or hyperbolic geometry

Different geometries (2)

- ► Euclidean geometry: a unique line parallel to a given line a through a point A not on the line
- ▶ Hyperbolic geometry: infinitely many parallels to a given line *a* through a point *A* not on the line

Goal

- ▶ Many ruler and compass constructions are valid only in Euclidean geometry
- ▶ We want to automatically find constructions that are valid in absolute geometry
- ▶ We want to automatically find constructions that are valid in hyperbolic geometry

Constructions using straightedge and compass

- ► Tools: straightedge and compass
- ► Elementary steps:
 - construction of an arbitrary point
 - construction of a line through two given points
 - construction of a circle centered at given point passing through another point
 - construction of an intersection of two circles, two lines, or a line and a circle
- We usually use compound construction steps

Automating triangle constructions

- System for automated solving of location construction problems from the given corpus (ArgoTriCS, authors: V. Marinković, P. Janičić)
- Initially focused solely on Euclidean geometry
- Export textual descriptions of constructions, and formal procedures in GCLC format
- ► The main problem in solving: combinatorial explosion – huge search space
- ► Adjusting the system for usage in education is the subject of current work (e.g., next-step guidance feature)

Corpora of construction problems

- ► Wernick's corpus (1982)
- ► Task: construct triangle *ABC* if locations of three significant points in the triangle are given

Corpora of construction problems (2)

Wernick's corpus: in total $\binom{16}{3} = 560$ instances, 139 non-trivial, significantly different problems; 3 redundant (R); 23 locus dependent (L); 74 solvable (S); 39 unsolvable (U)

1.	A, B, O	A, T_a, T_b A, T_a, T_b T_a, T	S 9	86. Ma, Mb, Hc S	$\begin{bmatrix} 113. \ M_a, T_b, T_c \\ 114. \ M_a, T_b, I & U & 9 \\ 115. \ G, H_a, H_b & U & 9 \end{bmatrix}$
2.	A, B, M_a	$S^{\frac{T_b, T_c}{I}}$	S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116. G, H _a , H S 117. G, H _a , T _a S 118. G, H _a , T _b
3.	A, B, M_c	$R^{\frac{M_b}{G}}$	S L	91. M _a , G, H _a L 92. M _a , G, H _b S	119. G, H _a , I 120. G, H, T _a U [9]
4.	A,B,G	S	S L		121. G, H, I U [9] 122. G, T _a , T _b 123. G, T _a , I
5.	A, B, H_a	L	S	97. Ma, Ha, Hb S	124. H _a , H _b , H _c S 125. H _a , H _b , H S 126. H _a , H _b , T _a S
6.	A, B, H_c	L	R U [9]	99. M _a , H _a , T _a L 100. M _a , H _a , T _b U [9]	127. H _a , H _b , T _c 128. H _a , H _b , I 129. H _a , H, T _a L
7.	A,B,H	S $\frac{H_b}{H}$	U [9]	102. M _a , H _b , H _c L 103. M _a , H _b , H S	130. H _a , H, T _b U 9 131. H _a , H, I S 9
8.	A, B, T_a	S_{J,H_a,T_b}			132. H _a , T _a , T _b 133. H _a , T _a , I S 134. H _a , T _b , T _c
9.	A, B, T_c	80. O, H, T _a 81. O, T _a , T _b	U 9	108. Ma, H, Ta U 9	135. H _a , T _b , I 136. H, T _a , T _b 137. H, T _a , I
26. A, A 27. A, A	I_a , A I_o , I I_a , I S $[9]$ $[55$, A , H , T_o I_b , M_c S $[56$, A , H , T_b	S 82. O, T _a , I S 83. M _a , M _b , M _c U 9 84. M _a , M _b , G	S [9]	110. Ma, H, I U 10	138. T _a , T _b , T _c U [11] 139. T _a , T _b , I S

Knowledge representation

Problem: Construct a triangle ABC given vertices A and B and its centroid G Solution: Construct the midpoint M_c of the segment AB, and then construct a point C such that it holds $\overrightarrow{M_cC}/\overrightarrow{M_cG}=3$

Following knowledge is used:

- \blacktriangleright M_c is the midpoint of the segment AB (definition of the point M_c)
- ► *G* is the centroid of the triangle *ABC* (definition of the point *G*)
- it holds: $\overrightarrow{M_cG} = 1/3\overrightarrow{M_cC}$ (lemma)
- \triangleright given points X and Y, construct the midpoint of the segment XY (primitive construction)
- given points X and Y, construct a point Z: $\overrightarrow{XZ}/\overrightarrow{XY} = m/n$ (primitive construction)

How to adapt ArgoTriCS for non-Euclidean geometries?

- Change definitions (when necessary)
- ► Change lemmas (when necessary)
- ► Change primitive construction steps (when necessary)
- ▶ The search algorithm remains the same
- Guiding heuristics might be adapted for better efficiency

Definitions and pseudo-elements

- ► In the Euclidean case many notions can be defined in equivalent ways For example,
 - a median is the segment that connect a triangle vertex with the midpoint of its opposite side
 - ▶ a median is a segment that divides the triangle area in two exact halves
- ▶ In hyperbolic case these need not coincide, so we define different objects For example, we distinguish:
 - median (definition 1) and
 - pseudo-median (definition 2)
- ► Some Euclidean theorems hold only for pseudo-elements (e.g., Euler line does not exist, but pseudo-Euler line exists)
- ▶ Unfortunately, some pseudo-elements are not ruler and compass constructible

Theorems of absolute geometry (weaker than in Euclidean geometry)

- ightharpoonup The sum of internal angles of a triangle is less or equal to π
- ▶ The three medians of a triangle intersect in one point (the centroid *G*)
- ▶ The three internal angle bisectors of a triangle intersect in one point (the incenter 1)
- ► The perpendicular bisectors of triangle sides belong to the same pencil of lines (the circumcenter need not exist)
- ▶ The altitudes a triangle belong to the same pencil of lines (the orthocenter need not exist)

Euclidean lemmas that fail in hyperbolic geometry

- ▶ The centroid G does not divide the median in 2:1 ratio
- ▶ The inscribed angle subtended by a diameter need not be right
- ▶ Locus of points subtending a segment under a given angle is not a circular arc
- Equidistant curve is not a line

Lemmas added to the system

▶ If a vertex A of triangle ABC belongs to the line p, then a vertex B belongs to a line which is an image of line p under the reflection wrt. point M_c

Lemmas added to the system

▶ Lines $M_a M_b$ and AB are hyperparallel and M_c is the foot of their common perpendicular (this one is specific for hyperbolic geometry)

Primitive constructions

Some primitive constructions fail in the hyperbolic case. For example:

▶ Given points X, Z, and W, and a rational number r one cannot construct a point Y for which holds: $\overrightarrow{XY}/\overrightarrow{ZW} = r$

However, special cases of those constructions can be done

- ▶ Given points X and Y construct the midpoint Z of the segment XY
- ▶ Given points X and Y construct the point Z symmetric to X wrt. point Y

Reflections were not primitive steps in Euclidean geometry solver, since they could be realized by other steps, but we needed to add them to the hyperbolic solver

 \triangleright Given a line m and a point P, construct its image under the reflection wrt. line m

Example

Problem: Construct the triangle ABC given three side midpoints M_a , M_b , and M_c Solution:

- 1. Construct the line a that is hyperparallel to the line through points M_b and M_c with point M_a being the foot of their common perpendicular;
- 2. Construct the line b that is hyperparallel to the line through points M_a and M_c with point M_b being the foot of their common perpendicular;
- 3. Construct the intersection point *C* of the lines *a* and *b*;
- 4. Construct the point B symmetric to C wrt. point M_a ;
- 5. Construct the point A symmetric to C wrt. point M_b .

Results

- ► From 139 significantly different problems, 31 determined solvable (and solved), 1 redundant and 11 locus dependent
- ► Compendium of solutions in hyperbolic geometry available here: http://poincare.matf.bg.ac.rs/~vesnap/animations_hyp/compendium_ wernick_hyperbolic.html

Conclusions

- We have identified definitions, lemmas and primitive constructions relevant for absolute and hyperbolic geometry
- We have adapted ArgoTriCS for solving constructions in absolute and hyperbolic geometry
- ▶ Ruler and compass constructions are much harder in absolute and hyperbolic geometry (we believe that many problems are not RC-constructible)