On automating triangle constructions in absolute and hyperbolic geometry Vesna Marinković, Tijana Šukilović, Filip Marić Faculty of Mathematics, University of Belgrade, Serbia ADG 15. 9. 2021. # Solving ruler and compass construction problems - ▶ One of the most studied problems in mathematical education - ► Task: to describe a construction of geometrical figure which satisfies given set of constraints - " construct $\triangle ABC$ given α , β and |AB|" - Constructions are procedures - ► Some instances are unsolvable (e.g. angle trisection) ## Different geometries - ► Many different geometries exist - ► Absolute geometry is based on four groups of axioms: incidence, order, congruence, and continuity - ▶ By adding the appropriate axiom of parallelism, we get either Euclidean geometry or hyperbolic geometry # Different geometries (2) - ► Euclidean geometry: a unique line parallel to a given line a through a point A not on the line - ▶ Hyperbolic geometry: infinitely many parallels to a given line *a* through a point *A* not on the line #### Goal - ▶ Many ruler and compass constructions are valid only in Euclidean geometry - ▶ We want to automatically find constructions that are valid in absolute geometry - ▶ We want to automatically find constructions that are valid in hyperbolic geometry # Constructions using straightedge and compass - ► Tools: straightedge and compass - ► Elementary steps: - construction of an arbitrary point - construction of a line through two given points - construction of a circle centered at given point passing through another point - construction of an intersection of two circles, two lines, or a line and a circle - We usually use compound construction steps ## Automating triangle constructions - System for automated solving of location construction problems from the given corpus (ArgoTriCS, authors: V. Marinković, P. Janičić) - Initially focused solely on Euclidean geometry - Export textual descriptions of constructions, and formal procedures in GCLC format - ► The main problem in solving: combinatorial explosion – huge search space - ► Adjusting the system for usage in education is the subject of current work (e.g., next-step guidance feature) # Corpora of construction problems - ► Wernick's corpus (1982) - ► Task: construct triangle *ABC* if locations of three significant points in the triangle are given # Corpora of construction problems (2) Wernick's corpus: in total $\binom{16}{3} = 560$ instances, 139 non-trivial, significantly different problems; 3 redundant (R); 23 locus dependent (L); 74 solvable (S); 39 unsolvable (U) | 1. | A, B, O | A, T_a, T_b A, T_a, T_b T_a, T | S 9 | 86. Ma, Mb, Hc S | $\begin{bmatrix} 113. \ M_a, T_b, T_c \\ 114. \ M_a, T_b, I & U & 9 \\ 115. \ G, H_a, H_b & U & 9 \end{bmatrix}$ | |----------------------|---|--|------------|---|--| | 2. | A, B, M_a | $S^{\frac{T_b, T_c}{I}}$ | S | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 116. G, H _a , H S
117. G, H _a , T _a S
118. G, H _a , T _b | | 3. | A, B, M_c | $R^{\frac{M_b}{G}}$ | S
L | 91. M _a , G, H _a L
92. M _a , G, H _b S | 119. G, H _a , I
120. G, H, T _a U [9] | | 4. | A,B,G | S | S
L | | 121. G, H, I U [9]
122. G, T _a , T _b
123. G, T _a , I | | 5. | A, B, H_a | L | S | 97. Ma, Ha, Hb S | 124. H _a , H _b , H _c S
125. H _a , H _b , H S
126. H _a , H _b , T _a S | | 6. | A, B, H_c | L | R
U [9] | 99. M _a , H _a , T _a L
100. M _a , H _a , T _b U [9] | 127. H _a , H _b , T _c
128. H _a , H _b , I
129. H _a , H, T _a L | | 7. | A,B,H | S $\frac{H_b}{H}$ | U [9] | 102. M _a , H _b , H _c L
103. M _a , H _b , H S | 130. H _a , H, T _b U 9
131. H _a , H, I S 9 | | 8. | A, B, T_a | S_{J,H_a,T_b} | | | 132. H _a , T _a , T _b
133. H _a , T _a , I S
134. H _a , T _b , T _c | | 9. | A, B, T_c | 80. O, H, T _a
81. O, T _a , T _b | U 9 | 108. Ma, H, Ta U 9 | 135. H _a , T _b , I
136. H, T _a , T _b
137. H, T _a , I | | 26. A, A
27. A, A | I_a , A I_o , I
I_a , I S $[9]$ $[55$, A , H , T_o
I_b , M_c S $[56$, A , H , T_b | S 82. O, T _a , I
S 83. M _a , M _b , M _c
U 9 84. M _a , M _b , G | S [9] | 110. Ma, H, I U 10 | 138. T _a , T _b , T _c U [11]
139. T _a , T _b , I S | ## Knowledge representation Problem: Construct a triangle ABC given vertices A and B and its centroid G Solution: Construct the midpoint M_c of the segment AB, and then construct a point C such that it holds $\overrightarrow{M_cC}/\overrightarrow{M_cG}=3$ #### Following knowledge is used: - \blacktriangleright M_c is the midpoint of the segment AB (definition of the point M_c) - ► *G* is the centroid of the triangle *ABC* (definition of the point *G*) - it holds: $\overrightarrow{M_cG} = 1/3\overrightarrow{M_cC}$ (lemma) - \triangleright given points X and Y, construct the midpoint of the segment XY (primitive construction) - given points X and Y, construct a point Z: $\overrightarrow{XZ}/\overrightarrow{XY} = m/n$ (primitive construction) # How to adapt ArgoTriCS for non-Euclidean geometries? - Change definitions (when necessary) - ► Change lemmas (when necessary) - ► Change primitive construction steps (when necessary) - ▶ The search algorithm remains the same - Guiding heuristics might be adapted for better efficiency ## Definitions and pseudo-elements - ► In the Euclidean case many notions can be defined in equivalent ways For example, - a median is the segment that connect a triangle vertex with the midpoint of its opposite side - ▶ a median is a segment that divides the triangle area in two exact halves - ▶ In hyperbolic case these need not coincide, so we define different objects For example, we distinguish: - median (definition 1) and - pseudo-median (definition 2) - ► Some Euclidean theorems hold only for pseudo-elements (e.g., Euler line does not exist, but pseudo-Euler line exists) - ▶ Unfortunately, some pseudo-elements are not ruler and compass constructible # Theorems of absolute geometry (weaker than in Euclidean geometry) - ightharpoonup The sum of internal angles of a triangle is less or equal to π - ▶ The three medians of a triangle intersect in one point (the centroid *G*) - ▶ The three internal angle bisectors of a triangle intersect in one point (the incenter 1) - ► The perpendicular bisectors of triangle sides belong to the same pencil of lines (the circumcenter need not exist) - ▶ The altitudes a triangle belong to the same pencil of lines (the orthocenter need not exist) # Euclidean lemmas that fail in hyperbolic geometry - ▶ The centroid G does not divide the median in 2:1 ratio - ▶ The inscribed angle subtended by a diameter need not be right - ▶ Locus of points subtending a segment under a given angle is not a circular arc - Equidistant curve is not a line ## Lemmas added to the system ▶ If a vertex A of triangle ABC belongs to the line p, then a vertex B belongs to a line which is an image of line p under the reflection wrt. point M_c #### Lemmas added to the system ▶ Lines $M_a M_b$ and AB are hyperparallel and M_c is the foot of their common perpendicular (this one is specific for hyperbolic geometry) #### Primitive constructions Some primitive constructions fail in the hyperbolic case. For example: ▶ Given points X, Z, and W, and a rational number r one cannot construct a point Y for which holds: $\overrightarrow{XY}/\overrightarrow{ZW} = r$ However, special cases of those constructions can be done - ▶ Given points X and Y construct the midpoint Z of the segment XY - ▶ Given points X and Y construct the point Z symmetric to X wrt. point Y Reflections were not primitive steps in Euclidean geometry solver, since they could be realized by other steps, but we needed to add them to the hyperbolic solver \triangleright Given a line m and a point P, construct its image under the reflection wrt. line m #### Example Problem: Construct the triangle ABC given three side midpoints M_a , M_b , and M_c Solution: - 1. Construct the line a that is hyperparallel to the line through points M_b and M_c with point M_a being the foot of their common perpendicular; - 2. Construct the line b that is hyperparallel to the line through points M_a and M_c with point M_b being the foot of their common perpendicular; - 3. Construct the intersection point *C* of the lines *a* and *b*; - 4. Construct the point B symmetric to C wrt. point M_a ; - 5. Construct the point A symmetric to C wrt. point M_b . #### Results - ► From 139 significantly different problems, 31 determined solvable (and solved), 1 redundant and 11 locus dependent - ► Compendium of solutions in hyperbolic geometry available here: http://poincare.matf.bg.ac.rs/~vesnap/animations_hyp/compendium_ wernick_hyperbolic.html #### Conclusions - We have identified definitions, lemmas and primitive constructions relevant for absolute and hyperbolic geometry - We have adapted ArgoTriCS for solving constructions in absolute and hyperbolic geometry - ▶ Ruler and compass constructions are much harder in absolute and hyperbolic geometry (we believe that many problems are not RC-constructible)