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Solving ruler and compass construction problems

I One of the most studied problems in mathematical education

I Task: to describe a construction of geometrical figure which satisfies given set of
constraints
“ construct 4ABC given α, β and |AB|”

I Constructions are procedures

I Some instances are unsolvable (e.g. angle trisection)



Different geometries

I Many different geometries exist

I Absolute geometry is based on four groups of axioms: incidence, order,
congruence, and continuity

I By adding the appropriate axiom of parallelism, we get either Euclidean geometry
or hyperbolic geometry



Different geometries (2)

I Euclidean geometry: a unique line parallel to a given line a through a point A not
on the line

I Hyperbolic geometry: infinitely many parallels to a given line a through a point A
not on the line
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Goal
I Many ruler and compass constructions are valid only in Euclidean geometry
I We want to automatically find constructions that are valid in absolute geometry
I We want to automatically find constructions that are valid in hyperbolic geometry
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Constructions using straightedge and compass

I Tools: straightedge and compass
I Elementary steps:

I construction of an arbitrary point
I construction of a line through two given points
I construction of a circle centered at given point passing through another point
I construction of an intersection of two circles, two lines, or a line and a circle

I We usually use compound construction steps



Automating triangle constructions

I System for automated solving of location construction problems from the given
corpus (ArgoTriCS, authors: V. Marinković, P. Janičić)

I Initially focused solely on Euclidean geometry

I Export textual descriptions of constructions, and formal procedures in GCLC
format

I The main problem in solving:
combinatorial explosion – huge search space

I Adjusting the system for usage in education is the subject of current work (e.g.,
next-step guidance feature)



Corpora of construction problems

I Wernick’s corpus (1982)

I Task: construct triangle ABC if locations of three significant points in the triangle
are given
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Corpora of construction problems (2)

Wernick’s corpus: in total
(16
3

)
= 560 instances, 139 non-trivial, significantly different

problems; 3 redundant (R); 23 locus dependent (L); 74 solvable (S); 39 unsolvable (U)



Knowledge representation

Problem: Construct a triangle ABC given vertices A and B and its centroid G
Solution: Construct the midpoint Mc of the segment AB, and then construct a point C such

that it holds
−−→
McC/

−−→
McG = 3
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Following knowledge is used:

I Mc is the midpoint of the segment AB (definition of the point Mc)
I G is the centroid of the triangle ABC (definition of the point G )

I it holds:
−−→
McG = 1/3

−−→
McC (lemma)

I given points X and Y , construct the midpoint of the segment XY (primitive construction)

I given points X and Y , construct a point Z :
−→
XZ/
−→
XY = m/n (primitive construction)



How to adapt ArgoTriCS for non-Euclidean geometries?

I Change definitions (when necessary)

I Change lemmas (when necessary)

I Change primitive construction steps (when necessary)

I The search algorithm remains the same

I Guiding heuristics might be adapted for better efficiency



Definitions and pseudo-elements

I In the Euclidean case many notions can be defined in equivalent ways
For example,

I a median is the segment that connect a triangle vertex with the midpoint of its
opposite side

I a median is a segment that divides the triangle area in two exact halves

I In hyperbolic case these need not coincide, so we define different objects
For example, we distinguish:

I median (definition 1) and
I pseudo-median (definition 2)

I Some Euclidean theorems hold only for pseudo-elements (e.g., Euler line does not
exist, but pseudo-Euler line exists)

I Unfortunately, some pseudo-elements are not ruler and compass constructible



Theorems of absolute geometry (weaker than in Euclidean geometry)

I The sum of internal angles of a triangle is less or equal to π

I The three medians of a triangle intersect in one point (the centroid G )

I The three internal angle bisectors of a triangle intersect in one point (the incenter I )

I The perpendicular bisectors of triangle sides belong to the same pencil of lines (the
circumcenter need not exist)

I The altitudes a triangle belong to the same pencil of lines (the orthocenter need not exist)
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Euclidean lemmas that fail in hyperbolic geometry

I The centroid G does not divide the median in 2:1 ratio

I The inscribed angle subtended by a diameter need not be right

I Locus of points subtending a segment under a given angle is not a circular arc

I Equidistant curve is not a line

I . . .



Lemmas added to the system

I If a vertex A of triangle ABC belongs to the line p, then a vertex B belongs to a
line which is an image of line p under the reflection wrt. point Mc
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Lemmas added to the system

I Lines MaMb and AB are hyperparallel and Mc is the foot of their common
perpendicular (this one is specific for hyperbolic geometry)

Oa

A

B

C

Ma

Mb

Mc



Primitive constructions

Some primitive constructions fail in the hyperbolic case. For example:

I Given points X , Z , and W , and a rational number r one cannot construct a point

Y for which holds:
−→
XY /

−−→
ZW = r

However, special cases of those constructions can be done

I Given points X and Y construct the midpoint Z of the segment XY

I Given points X and Y construct the point Z symmetric to X wrt. point Y

Reflections were not primitive steps in Euclidean geometry solver, since they could be
realized by other steps, but we needed to add them to the hyperbolic solver

I Given a line m and a point P, construct its image under the reflection wrt. line m



Example
Problem: Construct the triangle ABC given three side midpoints Ma, Mb, and Mc

Solution:

1. Construct the line a that is hyperparallel to the line through points Mb and Mc with point
Ma being the foot of their common perpendicular;

2. Construct the line b that is hyperparallel to the line through points Ma and Mc with point
Mb being the foot of their common perpendicular;

3. Construct the intersection point C of the lines a and b;

4. Construct the point B symmetric to C wrt. point Ma;

5. Construct the point A symmetric to C wrt. point Mb.
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Results

I From 139 significantly different problems, 31 determined solvable (and solved), 1
redundant and 11 locus dependent

I Compendium of solutions in hyperbolic geometry available here:
http://poincare.matf.bg.ac.rs/~vesnap/animations_hyp/compendium_

wernick_hyperbolic.html

http://poincare.matf.bg.ac.rs/~vesnap/animations_hyp/compendium_wernick_hyperbolic.html
http://poincare.matf.bg.ac.rs/~vesnap/animations_hyp/compendium_wernick_hyperbolic.html


Conclusions

I We have identified definitions, lemmas and primitive constructions relevant for
absolute and hyperbolic geometry

I We have adapted ArgoTriCS for solving constructions in absolute and hyperbolic
geometry

I Ruler and compass constructions are much harder in absolute and hyperbolic
geometry (we believe that many problems are not RC-constructible)
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