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Parametric Root Finding to support discovering
geometric inequalities in GeoGebra

(ADG 2021, Hagenberg, September 16)
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Inequality Exploration in planar Euclidean geom.

Create atriangle construction in a DGS and assume that a USER want to explore an INEQUALITY, that is,

all the possible ratio between

m =g,/g,, where g;can be perimeter, area, circumradius, sum of the medians, etc.,
for all nondegenerate triangles from a certain class.

We want to support this symbolically! Previous talk:

algebraically as 1st order real quantifier elimination problem (RQE).

We use tarski’s (Qepcad) and Mathematica’s RQE implementations
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Observations

Because the algebraization in GGBA is coordinate-based, we have several variables in the semialgebraic
representations.

When the #vars is more than 6, the RQE problem cannot be solved often in a reasonable time (~5sec)
However, the semialgebraic system for certain classes has only FINITELY MANY SOLUTIONS for a fixed
m, if wlog we fix a triangle side.

For instance, for Isosceles Triangle (IT) or the Right Triangle (RT) classes.=

Maybe other methods, approaches can help here to avoid general (full dimensional) RQE and to reduce

practical computational time.
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Observations [2]

n - - {Resolve[Exists[{a, b, c},
a+b>cAa+c>bAb+c>anc==bAa(a*2+b*2+c"2)==m(ab+bc+ca)], Reals],
Resolve[Exists[{b}, 2b>1A(1+2b”2)==m(b”"2+2b)], Reals]}

ouf--{l<m<2, 1<m<?2}

m--(@ar2+bArA2+chr2)/(ab+bc+ca)l.
{{a-»2,bs4,c»4),{a»1,b>2,c>»>2},{a>1/2,b>1, c>» 1}}
9 9 9

out[ « ]= {—, ) —}
8 8 8

w- - Solve[(1+2bA2)==m(bA2+2b)/. m->9/8]
4

our - {{b N ;}, b > 2}}
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Description of the problem

From elementary planar Euclidean geometry:
Consider Inequality Exploration problems from the class of nondegenerate isosceles triangles or the

class of right triangles

A A B
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Description of the problem [2]

From the algebraic/logical point of view: The EXPLORATION PROBLEM for IT/RT is
not a decision problem, not a SAT/UNSAT problem, but it is very close to that,
one free variable m and n existentially bound variables,

the nonlinear real algebraic model has Hilbert dimension 1.

We can reduce the RQE problem to finitely many SAT problems, in fact to real root counting (RRC).
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Description of the (new) PRF method

Detect via Grobner basis computations the “wrong/critical” points of the m-parameter space (where

the #sol of the real SAS may change): O U O;, U Ojns (Computation of MDV via reduction to Elimination)
Decompose the m-space into finitely many cells, generate sample for open cells

Solve the Real Root Counting// Real SAT problem and generate a gfree formula based on this.
Ref.: [Lazard 2007][Moroz 2006, 2011], [Xia, Hou 2002]
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Description of the (new) PRF method [2]

Existing Implementation :[Maple PRF Package, Maple RegChains]
(not only for 1pm )

Problems/difficulties:

disjunctions, non-strict inequalities, well-behaved systems, orderings.

In fact the IEP for general triangles lead to 2pms problems, but maybe a recursive classification of the

2D pm space helps!
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A very simple example

For anisosceles triangle, denote the length of the three sides
AB, BC, CA, by a=1,b,c=b (wlog a=1)

What is the (range of the) ratio of the sum of the squares of the sides (AB2 +BC2+CA%=2b%+ 1) and the
sum of the products of the sides (ABBC + ABCA +BCCA=bb+b+b=b*+2b)?
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A very simple example [2]

What is the (range of the) ratio of the sum of the squares of the sides (AB2 +BC2+CA%=2b%+ 1) and the
sum of the products of the sides (ABBC + ABCA +BCCA=bb+b+b=b*+2b)?

As an RQE (NONSAT) problem with one free and one (existentially bound) variable:

Resolve[d, (2b-1>0A2b*+1==m(b’+2b)), Reals]

outf /:lSm<2
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A very simple example [3]

b
4,
2,
ouff « J- 07 ° L L m
,> .—o -
—_2r i
_4 /
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A very simple example [4]

Reduction via Groebner Basis:
Moroz: 1D Ocrit U Oinequs U Oinfinity = Induces a complete 1D CAD (open intervals and points)

One typical computation for Ocrit via the partial Jacobian, that is, for detecting the value m=1 (first call)

m- - Flatten[{Factor [GroebnerBasis [
{2bAr2+1)-m(bA2+2b), D[(2bA2+1)-m(br2+2b), b], m(2b-1)t+1}, {m}, {t, b},
Factor[GroebnerBasis [{(2b*2+1)-m(b*2+2b), m(2b-1)-u, tu-1}, {m, u}, {t, b} /.
u -» 0], Factor[GroebnerBasis [
{(2b"*"2+u?r2)-m(b*2+2bu), tum(2b-u)-1, b-1}, {m, u}, {t, b}]/. u-> 0J}]

ot - {(=1+m)(2+m), m* (-6+5m), -2 +m}

ouff « J- {{l}, {S}, {2}}
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A very simple example [5]

Final Solution (1<m<2) the points and intervals for which the value True assigned

i - AbsoluteTiming [Table[Resolve [Exists[{b}, 2b-1>0A(2b”A2+1) == m(b®+2b)], Reals],
{m, {1/2, 1, 11/10, 6/5, 3/2, 2, 3}}]]

our - - {0.013465 , {False, True, True, True, True, False, False}}

m- - Reduce[m==1vl<m<6/5vm==6/5v6/5<m<2, x, Reals]

o--1<m<2
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A very simple example [6]

Reduce]
Resolve[Exists[{v10®, vil, v13}, (m> 0)A(V1l > O)A (VI3 > O)A(-4*Vv1OA2+4%v1i1lA2-1z== O)A
(-4%v10"24+4%v137r2-1==0)A(-m*Vv11*Vv13-mxv1l-m*»v13 +v11/22+v1i372+1==0)],
Reals], Reals](*GGBA CB versionx)

o--1<m<2
Comparison of Expressions Related to

Triangle Sides via realgeom, Bottema 1
(isosceles triangle, ver. b)

I
1
1
I
I
I
1
ID
e
ab+bc+ca)s@A+b2+c})<((2)-(ab+bc+ca)
1
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Motivation

Itis a practical work, intuitively it hopes to profit from the reduction of the number of variables (nu-

mber of CAD-cells) (and from theoretical comp. results) .

STAT: For IT/RT, 2-12 (bound) variables.
We have a pre-computed RQE Benchmark sets (>100 test cases)
Can we reach with the PRF method the same or even better results than with RQE?
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Findings

We worked with maple’s packages and and our prototype implementation in Mathematica based on a
selected BOTTEMA-problem collection (BM 1.1, 1.19, 4.2, 5.1, 5.3, 6.1, 8.1)
All the GGBA generated CB-based IT/RT problems could be treated with PRF but some refinements in

our implementation are needed, ongoing work...

nf - = @ 0.862 ... <m< 1/ ToRadicals

1
ou ,f:——+'\/_—'\[3—’\/§ sm<1
2

Inpsas94RBM81pb =
{{(4*vi6er2-v8722-1), (4*%v17T"2-4%xv8"2-1), v187r2-v87r2-1, (V19O7r2-Vv8"2),
4%v207r2-v8r2-4, (-m*xv18-m*xv19 -m+v16 +vVv17 +v20)}, {m, vi6, v17, v18, v19, v20}}

auxd2d[{Inpsas94 , m}]
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{{le , V17, v18, v19, v20, v8}, True, {(81-72m-232m*-32m*+ 16 m*)
(81+72m-232m*+32m>+16m*) (-81+324m* +36m> +144 m* + 416 m° - 64 m® + 64 m’)
(81-324m*+36m>-144 m* + 416 m° + 64 m® + 64 m')},

{4-1+mm® @ +m)(-142m (1+2m) (-3+4m?)° (3+4m?)°
(81 +324 m- 324 m* - 1296 m® + 2304 m* - 2304 m° + 1728 m® + 256 m°)
(81-324 m-324 m* + 1296 m*> + 2304 m* + 2304 m® + 1728 m® + 256 ms)z} )
{{-v?®+4v1e® -v8?}, {~u? +4v17? -4 v8?}, {-u® +v18® - v8?}, {v19? - v8?},
{-4u”+4v20%-v8%}, {-mu+v16 + V17 -mv18 - mv19 +v20}},
{{m}, {v16}, {v17}, {v18}, {v19}, {v20}}, {{-67108864 (-1 +m)m* (L +m)(-1+2m)’ (1+2m)’},
{-1048576 (-1+m)m* (L+m) (-1+2m)* (1 +2m)°}, {-16384 (-1+m)m* (L+m) (-1+2m)* (1 +2m)°},
{16384 (-1+mm* (1+m)(-1+2m)* (1+2m)?}, {~1048576 (-1+mm* (1 +m)(-1+2m)* (1+2m)?},

{268 435456 (-1 +m)’ ms(1+m)2<—1+2m)“(1+2m)“}},{@0.447... » (V)o.aa8 . s

) \E
;, @0.547... ’ @0.801... s @0.862.., ’ T, 1, @2.61.., ’ @5.02,.. },

({fr- e - s b o s - S - 21

2131 57

(I S - s e 0 e T3 (s S0 w0 a0},

21
{False, False, False, False, False, False, True, True, False, False, False},

V3

’
2

{False , False, False, False, False, False, @ 0.862 . <M<

B

<m< 1, False, False, Fa'Lse}, {False , False, False, False, False,
2

V3
m== ({)o.862.. > M== - False, False, False}, )e.g62.. sm< 1}
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Conclusion

If GB and (nonlinear) real SAT or RRC are implemented and they are fast, it COULD be a viable approach
instead of the general RQE.

Educational applications all the sub-algorithms should be implemented in a free software (GB — Giac,
SAT —> tarski, SMT-RAT,..., WS?)

The exploration problems for a GENERAL triangles are not 1D problems. MDV in a 2D space: 2D generic
CAD, also recursive analysis of curves?
Discussion: Any suggestion? SEE GT for m = (AB® + BC? + CA®)/(AB + BC + CA)

“Tp

outf + J=
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