Inference Maximizing Point Configurations for Parsimonious Algorithms

Shivam $Sharma^{1[0000-0003-1480-7684]}$ and John $Keyser^{1[0000-0002-4829-9975]}$

Texas A&M University, College Station, TX 77840, USA

Abstract. We present an exploration of inferring orientations for point configurations. We can compute the orientation of every triple of points by a combination of direct calculation and inference from prior computations. This "parsimonious" approach was suggested by Knuth in 1992 [6], and aims to minimize calculation by maximizing inference. We wish to investigate the efficacy of this approach by investigating the minimum and maximum number of inferences that are possible for a point set configuration. To find the configurations which yield maximum inferences, there is no direct formula and hence two constructive approaches are suggested. A basic analysis of sequences that achieve those maximum inferences is also presented and some properties have been proved regarding their existence.

Keywords: Combinatorial Geometry \cdot Order Types \cdot Robust Geometric Computation.