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Abstract

We discuss some possible characterizations of regular polygons
that can be directly used in algebraic provers in automated
reasoning in geometry.



Why is this interesting?

▶ Usually, automated reasoning in geometry is interested in
classic theorems connected with points, segments, lines,
triangles, circles, and angles. It is rarely, however, that regular
polygons are involved. In fact, there are many interesting
theorems related to regular polygons that could be proven by
automated reasoning as well.

▶ Regular polygons look simple, but an exact definition of them
may be challenging.



A possible definition
. . .by using algebraic geometric means

Consider the plane R2. Put the first two vertices of a regular n-gon
in (0, 0) and (1, 0), and then set up a minimal polynomial
Cn(x) ∈ Z[x] of cos 2π

n . Now, by setting x2 + y2 = 1 and for the
coordinates (xi , yi) of the regular n-gon,(
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i = 2, 3, . . . , n − 1, we have a set of algebraic equations that
uniquely describe a regular n-gon together with its star-regular
counterparts, as a total of φ(n) cases.



A general issue (unsolvable in algebraic geometry)
Impossible to distinguish between regular and star-regular cases



Other issues

▶ Multiplication of matrices may be a non-trivial concept for
young learners.

▶ The approach also uses a non-trivial formula introduced by
Watkins and Zeitlin (1993) which is based on the Chebyshev
polynomials of the first kind.

Thus, it makes difficult to communicate even simple results based
on regular polygons for a non-expert audience (e.g., for students or
young learners).



Properties of regular polygons
. . .that may be used to find other characterizations

D1 Their sides are of equal length.

D2 Their shortest diagonals are of equal length.

D3 Their second-shortest diagonals are of equal length.

D... . . .

D⌊ n
2 ⌋

Their longest diagonals are of equal length.

Ni The ith point is different from the first point (Pi , P0,
0 ≤ i < n).

Nij The ith and jth points are different (Pi , Pj , 0 ≤ i, j < n).

I1 Their interior angles are equal.

(The tan, sin or cos of their
interior angles are equal.)
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Some possible characterizations

▶ For n = 3: N1 ∧ D1 (P0 , P1 ∧ |P0P1| = |P1P2| = |P2P0|)

▶ For n = 4: N1 ∧ N2 ∧ D1 ∧ D2 (P0 , P1 ∧ P0 , P2 ∧

|P0P1| = |P1P2| = |P2P3| = |P3P0| ∧ |P0P2| = |P1P3|)
▶ For n = 5: N1 ∧ D1 ∧ D2

▶ For n = 6: N1 ∧ N2 ∧ N3 ∧ D1 ∧ D2 ∧ D3

▶ For n = 7: N1 ∧ D1 ∧ D2

Is there a general rule? Can we find simple characterizations?
How about restricting non-degeneracy conditions to Nd where
d | n? How to prove if a generalization is correct “for all n”? (For a
given n, we can always use computer algebra and utilize
elimination from algebraic geometry. This is also useful to find
counterexamples for ambiguous sets of assumptions.)
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Example for n = 5 in the CAS Giac
Fix P0, P1, use Rabinowitsch’s trick

n:=5

// Define points:

X:=[0,1,x2,x3,x4] // we always fix P0 to (0,0) and P1 to (1,0)

Y:=[0,0,y2,y3,y4]

// List of polynomials:

p:=[undef]

sqdist(i,j):=(X[j]-X[i])ˆ2+(Y[j]-Y[i])ˆ2

l:=0

// Assume D1, D2, ...

for(j=1;j<n;j++) {for(k=1;k<=n/2;k++,l++)

{p[l]:=sqdist(j,irem(j+k,n))-sqdist(0,k)}}↪→

p[l]:=t

// Assume N1, ...

for(j=1;j<2;j++) {if(irem(n,j)==0) p[l]:=p[l]*sqdist(0,j);}

p[l]:=p[l]-1

el:=eliminate(p,[x3,y3,x4,y4,t])

s:=solve(el,[x2,y2])

lens:=len(s)

lenphi:=Phi(n)

lens == lenphi



Example for n = 5 in the CAS Giac (with partial output)
Fix P0, P1, use Rabinowitsch’s trick

0>> n:=5

1>> // Define points:

2>> X:=[0,1,x2,x3,x4]

3>> Y:=[0,0,y2,y3,y4]

4>> // List of polynomials:

5>> p:=[undef]

6>> sqdist(i,j):=(X[j]-X[i])ˆ2+(Y[j]-Y[i])ˆ2

7>> l:=0

8>> // Assume D1, D2, ...

9>> for(j=1;j<n;j++) {for(k=1;k<=n/2;k++,l++) {p[l]:=sqdist(j,irem(j+k,n))-sqdist(0,k)}}

[(x2-1)ˆ2+y2ˆ2-1,(x3-1)ˆ2+y3ˆ2-x2ˆ2-y2ˆ2,(x3-x2)ˆ2+(y3-y2)ˆ2-1,(x4-x2)ˆ2+(y4-y2)ˆ2-x2ˆ2-y2ˆ2,

(x4-x3)ˆ2+(y4-y3)ˆ2-1,(-x3)ˆ2+(-y3)ˆ2-x2ˆ2-y2ˆ2,(-x4)ˆ2+(-y4)ˆ2-1,(1-x4)ˆ2+(-y4)ˆ2-x2ˆ2-y2ˆ2]↪→
10>> p[l]:=t

11>> // Assume N1, ...

12>> for(j=1;j<2;j++) {if(irem(n,j)==0) p[l]:=p[l]*sqdist(0,j);}

13>> p[l]:=p[l]-1

[(x2-1)ˆ2+y2ˆ2-1,(x3-1)ˆ2+y3ˆ2-x2ˆ2-y2ˆ2,(x3-x2)ˆ2+(y3-y2)ˆ2-1,(x4-x2)ˆ2+(y4-y2)ˆ2-x2ˆ2-y2ˆ2,

(x4-x3)ˆ2+(y4-y3)ˆ2-1,(-x3)ˆ2+(-y3)ˆ2-x2ˆ2-y2ˆ2,(-x4)ˆ2+(-y4)ˆ2-1,(1-x4)ˆ2+(-y4)ˆ2-x2ˆ2-y2ˆ2,t-1]↪→
14>> el:=eliminate(p,[x3,y3,x4,y4,t])

[4*x2ˆ2-6*x2+1,4*y2ˆ2-2*x2-1]

15>> s:=solve(el,[x2,y2])

list[[-(-4*(sqrt(1/8*(sqrt(5)+5)))ˆ2+1)/2,sqrt(1/8*(sqrt(5)+5))],[-(-4*(-sqrt(1/8* ⌋
(sqrt(5)+5)))ˆ2+1)/2,-sqrt(1/8*(sqrt(5)+5))],[-(-4*(sqrt(1/8*(-sqrt(5)+5)))ˆ2+1)/2,sqrt(1/8* ⌋
(-sqrt(5)+5))],[-(-4*(-sqrt(1/8*(-sqrt(5)+5)))ˆ2+1)/2,-sqrt(1/8*(-sqrt(5)+5))]]

↪→
↪→
16>> lens:=len(s)

4

17>> lenphi:=Phi(n)

4

18>> lens == lenphi

true



Main results

1. If n ≥ 6, the assumption set
▶ Nk for each 1 ≤ k < n,
▶ D1,
▶ D2,
▶ D3

gives an unambiguous characterization.
2. For each n (n ≥ 3), the assumption set

▶ Nk for each 1 ≤ k < n,
▶ D1,
▶ D2,
▶ . . .,
▶ D⌊ n

2 ⌋

gives an unambiguous characterization.



Trivial counterexamples

▶ For n = 2k (k ≥ 2), the assumption D1 ∧ D2 ∧ . . . ∧ Dk is
ambiguous, because 2 copies of a regular k -gon in a loop is
also a realization.

▶ The same problem occurs for n = 3k , n = 4k , . . .

Adding N1, N2, . . ., Nn−1 seems to solve this issue, but using all of
these extra assumptions may be unnecessary (and an overkill).



Main results
Counterexamples

▶ For n = 8, the assumption N1 ∧ N2 ∧ N4 ∧ D1 ∧ D3 ∧ D4 is
ambiguous (insufficient).

▶ For n = 9, the assumption N1 ∧ N3 ∧ D1 ∧ D2 ∧ D4 is
insufficient.

▶ For n = 10, the assumptions
▶ N1 ∧ N2 ∧ N5 ∧ D1 ∧ D3 ∧ D5,
▶ N1 ∧ N2 ∧ N5 ∧ D1 ∧ D4 ∧ D5,
▶ N1 ∧ N2 ∧ N5 ∧ D2 ∧ D4 ∧ D5

are insufficient.
▶ For n = 11, the assumption N1 ∧ D2 ∧ D3 ∧ D5 is insufficient.



Non-trivial counterexamples
n = 8, N1 ∧ N2 ∧ N4 ∧ D1 ∧ D3 ∧ D4 (square)



Non-trivial counterexamples
n = 9, N1 ∧ N3 ∧ D1 ∧ D2 ∧ D4 (two regular triangles)



Non-trivial counterexamples
n = 10, N1 ∧ N2 ∧ N5 ∧ D1 ∧ D3 ∧ D5 (5-pointed stars, infinitely many variations)



Non-trivial counterexamples
n = 10, N1 ∧ N2 ∧ N5 ∧ D1 ∧ D4 ∧ D5 (a 5-pointed star with 240◦ and 48◦ internal ∠)



Non-trivial counterexamples
n = 10, N1 ∧ N2 ∧ N5 ∧ D2 ∧ D4 ∧ D5 (∪ of two shifted regular 5-grams, ∞ variations)



Possible issues with complex coordinates

Without non-degeneracy conditions, for n = 11, the assumption
D2 ∧ D3 ∧ D4 delivers possible solutions with complex coordinates,
namely, for example, P2 = P6 = P7 = (0, 0),
P3 = P4 = P5 = P8 = P9 = P10 = (1/2, i/2). In fact, the problem
here is that the elimination theory, based on algebraic geometry,
deals with coordinates from the algebraic closure of the real
numbers (which is the field of the complex numbers). When being
non-minimalist and setting P0 , Pi for each 1 < i < n again, this
problem does not appear anymore and we obtain the regular (star)
11-gon only.

Theoretically, it would be safer to define non-overlapping of points
by setting one of their coordinates different. We conjecture,
however, that this safety is not required in general.



Main result (repeated)

1. If n ≥ 6, the assumption set
▶ Nk for each 1 ≤ k < n,
▶ D1,
▶ D2,
▶ D3

gives an unambiguous characterization.
2. If n ≥ 3, the assumption set

▶ Nk for each 1 ≤ k < n,
▶ D1,
▶ D2,
▶ . . .,
▶ D⌊ n

2 ⌋

gives an unambiguous characterization (a weaker form).



Main result
Sketch of the proof

Prop. 1 Given the points A0 = (0, 0), A1 = (1, 0), . . ., A4 = (x4, y4) in
the plane, |A0A1| = |A1A2| = |A2A3| = |A3A4|,
|A0A2| = |A1A3| = |A2A4|, |A0A3| = |A1A4|. Then, cosines of
the angles at vertices A1, A2 and A3 are equal.
(Proof: With a CAS, via elimination and contradiction.)

Prop. 2 Given the points A0 = (0, 0), A1 = (1, 0), . . ., A4 = (x4, y4) in
the plane, |A0A1| = |A1A2| = |A2A3| = |A3A4|,
|A0A2| = |A1A3| = |A2A4|, |A0A3| = |A1A4|. We assume that
the oriented distance of A2 from the line A0A1 is the same in
absolute value but has a different sign as the oriented
distance of A3 from the line A1A2. Then, the resulting polyline
A0A1A2A3A4 forms a W-like shape or a straight polyline
(unless A0 = A4).
(Proof: With a CAS + human thinking, geometrically.)
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Proof of Prop. 1
First part: Angles at A1 and A2 are equal

X:=[0,1,x2,x3,x4]

Y:=[0,0,y2,y3,y4]

p:=[undef]

sqdist(i,j):=(X[j]-X[i])ˆ2+(Y[j]-Y[i])ˆ2

sprod(i,j,k):=(X[j]-X[i])*(X[j]-X[k])+(Y[j]-Y[i])*(Y[j]-Y[k])

l:=0

for(k=1;k<=3;k++) { for(j=1;j<=4-k;j++,l++)

{p[l]:=sqdist(j,j+k)-sqdist(0,k)}}↪→

p[l]:=t

p[l]:=p[l]*(sprod(0,1,2)-sprod(1,2,3))

p[l]:=p[l]-1

el1:=eliminate(p,[x3,y3,x4,y4,t])

// Elimination gives [1] which means success (via contradiction)



Proof of Prop. 2
Obtaining elimination ideals that can be analyzed geometrically

X:=[0,1,x2,x3,x4]

Y:=[0,0,y2,y3,y4]

p:=[undef]

sqdist(i,j):=(X[j]-X[i])ˆ2+(Y[j]-Y[i])ˆ2

sprod(i,j,k):=(X[j]-X[i])*(X[j]-X[k])+(Y[j]-Y[i])*(Y[j]-Y[k])

halfpl(i,j,k):=(X[k]-X[j])*(Y[i]-Y[j])-(X[i]-X[j])*(Y[k]-Y[j])

l:=0

for(k=1;k<=3;k++) { for(j=1;j<=4-k;j++, l++)

{p[l]:=sqdist(j,j+k)-sqdist(0,k)}}↪→

p[l]:=t

p[l]:=p[l]*(halfpl(0,1,2)-halfpl(1,2,3))

p[l]:=p[l]-1

el1:=eliminate(p,[x3,y3,x4,y4,t])

el2:=eliminate(p,[x2,y2,x4,y4,t])

el3:=eliminate(p,[x2,y2,x3,y3,t])



Proof of Prop. 2
Human-driven geometrical analysis

Eliminations yield the ideals ⟨x2
2 + y2

2 − 2x2⟩, ⟨x2
3 + y2

3 − 4x3 + 3⟩,
⟨x2

4 + y2
4 − 4x4⟩, shown as algebraic varieties.

https://www.geogebra.org/m/wavmgrbu


Applications and future work

▶ See another talk “Proving theorems on regular polygons by
elimination – the elementary way”, including theorems on the
Golden ratio, paper folding (of a regular heptagon), a theorem
on regular 9-gons (classroom applications).

▶ This technique can be used to prove a conjecture of Paul
Erdős (https://arxiv.org/abs/2412.05190, “A note on
Erdős’s mysterious remark”, Z.K.).

▶ Conjectures:
▶ If n ≥ 3, n is prime, N1 ∧ D1 ∧ D2 is sufficient.
▶ If n ≥ 6, the assumptions N1, Nd for each d|n, D1, D2 and D3

are sufficient (that is, the non-degeneracy conditions can be
minimized).

▶ If n ≥ 3, the assumptions N1, Nd for each d|n, D1, D2, . . ., D⌊ n
2 ⌋

are sufficient (a weaker form).
▶ Non-degeneracy conditions always help to avoid the issues

with complex coordinates.

https://arxiv.org/abs/2412.05190
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THANK YOU!
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