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Abstract

We discuss some possible characterizations of regular polygons
that can be directly used in algebraic provers in automated
reasoning in geometry.



Why is this interesting?

> Usually, automated reasoning in geometry is interested in
classic theorems connected with points, segments, lines,
triangles, circles, and angles. It is rarely, however, that regular
polygons are involved. In fact, there are many interesting
theorems related to regular polygons that could be proven by
automated reasoning as well.

> Regular polygons look simple, but an exact definition of them
may be challenging.



A possible definition

...by using algebraic geometric means

Consider the plane R2. Put the first two vertices of a regular n-gon
in (0,0) and (1,0), and then set up a minimal polynomial

Cn(x) € Z[x] of cos 2. Now, by setting x? + y2 = 1 and for the
coordinates (x;, y;) of the regular n-gon,
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i=2,3,...,n—1, we have a set of algebraic equations that

uniquely describe a regular n-gon together with its star-regular
counterparts, as a total of ¢(n) cases.



A general issue (unsolvable in algebraic geometry)

Impossible to distinguish between regular and star-regular cases
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Other issues

> Multiplication of matrices may be a non-trivial concept for
young learners.

> The approach also uses a non-trivial formula introduced by
Watkins and Zeitlin (1993) which is based on the Chebyshev
polynomials of the first kind.

Thus, it makes difficult to communicate even simple results based
on regular polygons for a non-expert audience (e.g., for students or
young learners).



Properties of regular polygons

...that may be used to find other characterizations

Dy Their sides are of equal length.
D, Their shortest diagonals are of equal length.
D5 Their second-shortest diagonals are of equal length.

Dyg) Their longest diagonals are of equal length.

N; The ith point is different from the first point (P; # Po,
0<i<n).

Nj The ith and jth points are different (P; # P;, 0 < i,j < n).
I1 Their interior angles are equal.
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N; The ith point is different from the first point (P; # Po,
0<i<n).

Nj The ith and jth points are different (P; # P;, 0 < i,j < n).

I1 Their interior angles are equal. (The tan, sin or cos of their
interior angles are equal.)
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v

Forn=3: Ny A Dy (Pg # Py A |PgP1| = |P1Ps| = |P2Py))

Forn=4: Ny AN> ADyADs(Py# Py APy# PoA
|PoP1| = |P1P2| = |P2P3| = |P3Po| A |PoP2| = |P1P3l)

» Forn=5: Ny ADy A D>
» Forn=6: Ny AN>AN3sADy ADs A Ds
» Forn=7: Ny ADy A D>

v

Is there a general rule? Can we find simple characterizations?
How about restricting non-degeneracy conditions to Ny where

d | n? How to prove if a generalization is correct “for all n”? (For a
given n, we can always use computer algebra and utilize
elimination from algebraic geometry. This is also useful to find
counterexamples for ambiguous sets of assumptions.)



Example for n = 5 in the CAS Giac

Fix Py, Py, use Rabinowitsch’s trick

n:=5

// Define points:

X:=[0,1,x2,x3,x4] // we always fix P® to (0,0) and P1 to (1,0)
Y:=[0,0,y2,y3,y4]

// List of polynomials:

p:=[undef]

sqdist(i, ) :=(X[j1-X[i]) "2+(Y[jI-Y[i])"2

1:=0

// Assume D1, D2, ...

for(j=1;j<n;j++) {for(k=1;k<=n/2;k++,1++)

— {p[l]:=sqdist(j,irem(j+k,n))-sqdist(0,k)}}

p[l]:=t

// Assume N1, ...

for(j=1;3j<2;j++) {if(irem(n,j)==0) p[l]:=p[l]*sqdist(0,j);}
p[1]:=p[1]-1

el:=eliminate(p, [x3,y3,x4,y4,t])

s:=solve(el, [x2,y2])

lens:=len(s)

lenphi:=Phi(n)

lens == lenphi



Example for n = 5 in the CAS Giac (with partial output)
Fix Py, Py, use Rabinowitsch’s trick

0>> n:=5

1>> // Define points:

2>> X:=[0,1,x2,x3,x4]

3>> Y:=[0,0,y2,y3,y4]

4>> // List of polynomials:

5>> p:=[undef]

6>> sqdist(i,j):=(X[jI-X[i])"2+(Y[j]-Y[i])"2

7>> 1:=0

8>> // Assume D1, D2, ...

9>> for(j=1;j<n;j++) {for(k=1;k<=n/2;k++,1++) {p[l]:=sqdist(j,irem(j+k,n))-sqdist(0,k)}}
[(x2-1)"2+y272-1,(x3-1) "2+y3"2-x2"2-y2"2, (x3-x2) "2+(y3-y2) "2-1, (x4-x2) "2+(y4-y2) "2-x2"2-y2"2,

< (x4-x3)"2+(y4-y3)"2-1,(-x3)"2+(-y3) "2-x2"2-y2"2, (-x4) "2+ (-y4) "2-1, (1-x4) "2+ (-y4) "2-x2"2-y2"2]
10>> p[l]:=t

11>> // Assume N1, ...

12>> for(j=1;j<2;j++) {if(irem(n,j)==0) p[1l]:=p[1]*sqdist(0,j);}

13>> p[1]:=p[l]-1

[(x2-1)"2+y2"2-1,(x3-1) "2+y3"2-x2"2-y2"2, (x3-x2) "2+(y3-y2) "2-1, (x4-x2) "2+(y4-y2) "2-x2"2-y2"2,

—  (x4-%x3)"2+(y4-y3)"2-1,(-x3) "2+(-y3) "2-x2"2-y2"2,(-x4) "2+(-y4) "2-1, (1-x4) "2+(-y4) "2-x2"2-y2"2,t-1]
14>> el:=eliminate(p, [x3,y3,x4,y4,t])

[4*x272-6%x2+1,4%y2"2-2%x2-1]

15>> s:=solve(el, [x2,y2])
list[[—(—4*(sqrt(1/8*(sqrt(5)+5)))‘Z+1)/Z,sqrt(l/B*(sqrt(5)+5))],[—(—4*(—sqrt(l/8*J

PN (sqrt(5)+5)))”2+1)/2,—sqrt(l/8*(sqrt(5)+5))],[—(—4*(sqrt(l/B*(—sqrt(5)+5)))A2+1)/2,sqrt(l/s*J
—  (-sqrt(5)+5))1, [-(-4*(-sqrt(1/8*(-sqrt(5)+5))) "2+1)/2,-sqrt(1/8*(-sqrt(5)+5))1]

16>> lens:=len(s)

4
17>> lenphi:=Phi(n)
4
18>> lens == lenphi

true



Main results

1. If n > 6, the assumption set
> Ny foreach1 <k <n,
> Dy,
> Do,
> D,
gives an unambiguous characterization.
2. For each n (n > 3), the assumption set
> Ni foreach1 <k <n,
> Dy,
> Do,
> ey
> Dy
gives an unambiguous characterization.



Trivial counterexamples

» For n =2k (k > 2), the assumption Dy A Do A ... A Dx is
ambiguous, because 2 copies of a regular k-gon in a loop is
also a realization.

» The same problem occurs for n = 3k, n =4k, ...

Adding Ny, N, ..., N,_1 seems to solve this issue, but using all of
these extra assumptions may be unnecessary (and an overkill).



Main results

Counterexamples

» For n = 8, the assumption Ny A N A Ng A Dy A D3 A Dy is
ambiguous (insufficient).
> For n =9, the assumption Ny A N3 A Dy A Do A Dy is
insufficient.
» For n =10, the assumptions
> N;y ANy ANsA Dy A D3 A Ds,
> Ny AN>ANsADyADyA Ds,
> Ny ANaANsADoADyA Dsg
are insufficient.
> For n = 11, the assumption Ny A Do A D3 A Ds is insufficient.



Non-trivial counterexamples
n =328, N1 A N2 A N4 A D1 A D3 A D4 (Square)




Non-trivial counterexamples
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Non-trivial counterexamples

n =10, Ny A N> A Ns A Dy A Dy A Ds (a 5-pointed star with 240° and 48° internal 2)




Non-trivial counterexamples

n =10, Ny A N> A Ns A Dy A Dy A Ds (U of two shifted regular 5-grams, oo variations)

DA



Possible issues with complex coordinates

Without non-degeneracy conditions, for n = 11, the assumption
D> A D3 A D4 delivers possible solutions with complex coordinates,
namely, for example, P, = P = P; = (0,0),

P3 =Py = P5 = Pg = Pg = P10 = (1/2, I/2) In fact, the problem
here is that the elimination theory, based on algebraic geometry,
deals with coordinates from the algebraic closure of the real
numbers (which is the field of the complex numbers). When being
non-minimalist and setting Py # P; for each 1 < i < n again, this
problem does not appear anymore and we obtain the regular (star)
11-gon only.

Theoretically, it would be safer to define non-overlapping of points
by setting one of their coordinates different. We conjecture,
however, that this safety is not required in general.



Main result (repeated)

1. If n > 6, the assumption set
> Ny foreach1 <k <n,
> Dy,
> Do,
> D,
gives an unambiguous characterization.

2. If n > 3, the assumption set
> N foreach1 <k <n,
> Dy,
> Do,
> -
> Dy
gives an unambiguous characterization (a weaker form).



Main result
Sketch of the proof

Prop. 1 Given the points Ap = (0,0), Ay = (1,0), ..., As = (Xa, ya) in
the plane, |AoA1| = |A1Az| = |A2A3| = |A3A4l,
[AgAs| = |A1A3] = |A2A4], |AoAs| = |A1A4]. Then, cosines of
the angles at vertices Ay, A2 and Az are equal.
(Proof: With a CAS, via elimination and contradiction.)



Main result
Sketch of the proof

Prop. 1

Prop. 2

Given the points Ao = (0,0), A1 = (1 , 0), Ceay A4 = (X4,y4) in
the plane, |AoA1| = |A1Az| = |A2A3| = |A3A4l,

[AgAs| = |A1A3] = |A2A4], |AoAs| = |A1A4]. Then, cosines of
the angles at vertices Ay, A2 and Az are equal.

(Proof: With a CAS, via elimination and contradiction.)

Given the points Ag = (0,0), Ay = (1,0), ..., Ay = (X, ¥4) in
the plane, |AgA1] = |A1Az| = |A2A3| = |A3A4],

|AgAz| = |A1A3] = |A2A4], |AgAs| = |A1A4]. We assume that
the oriented distance of A, from the line AgA; is the same in
absolute value but has a different sign as the oriented
distance of A from the line A{A,. Then, the resulting polyline
AoA1A2A3A4 forms a W-like shape or a straight polyline
(unless Ag = Ay).

(Proof: With a CAS + human thinking, geometrically.)



Proof of Prop. 1

First part: Angles at A; and A; are equal

X:=[0,1,x2,x3,x4]

Y:=[0,0,y2,y3,y4]

p:=[undef]

sqdist(i, ) :=(X[j]1-X[i]) "2+(Y[jI-Y[i])"2

sprod(i,j,k) :=(X[j]1-X[1DD*X[JI-X[kD+[FI-YID*(Y[j]1-Y[kD
1:=0

for(k=1;k<=3;k++) { for(j=1;j<=4-k;j++,1++)

— {p[l]:=sqdist(j,j+k)-sqdist(®,k)}}

p[l]:=t

p[l]:=p[1]*(sprod(®,1,2)-sprod(1,2,3))

p[1]:=p[1]-1

ell:=eliminate(p, [x3,y3,x4,y4,t])

// Elimination gives [1] which means success (via contradiction)



Proof of Prop. 2

Obtaining elimination ideals that can be analyzed geometrically

X:=[0,1,x2,x3,x4]

Y:=[0,0,y2,y3,y4]

p:=[undef]

sqdist(i, ) :=(X[j]1-X[11)"2+(Y[JI-Y[i])"2

sprod(i,j,k) :=(X[FI1-X[iDD*X[F1-X[KD+[J1-Y[L11D*(Y[j1-Y[k])
halfpl(d,j, k) :=X[k]-X[JD*CY[i]-Y[JD-X[11-X[iD*(Y[kI-Y[iD)
1:=0

for(k=1;k<=3;k++) { for(j=1;j<=4-k;j++, 1++)

— {p[l]:=sqdist(j,j+k)-sqdist(0,k)}}

p[l]:=t

p[1l]:=p[1]*Chalfpl(®,1,2)-halfpl(l,2,3))

p[1]:=p[1]-1

ell:=eliminate(p, [x3,y3,x4,y4,t])

el2:=eliminate(p, [x2,y2,x4,y4,t])

el3:=eliminate(p, [x2,y2,x3,y3,t])



Proof of Prop. 2

Human-driven geometrical analysis

~ -
———————

Eliminations yield the ideals (x2 + y2 — 2xz), (X2 + y2 — 4x3 + 3),
(X2 + yZ — 4x4), shown as algebraic varieties.


https://www.geogebra.org/m/wavmgrbu

Applications and future work

> See another talk “Proving theorems on regular polygons by
elimination — the elementary way”, including theorems on the
Golden ratio, paper folding (of a regular heptagon), a theorem
on regular 9-gons (classroom applications).
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Applications and future work

> See another talk “Proving theorems on regular polygons by
elimination — the elementary way”, including theorems on the
Golden ratio, paper folding (of a regular heptagon), a theorem
on regular 9-gons (classroom applications).

> This technique can be used to prove a conjecture of Paul
Erdds (https://arxiv.org/abs/2412.05190, “A note on
Erd6s’s mysterious remark”, Z.K.).
> Conjectures:
> If n> 3, nis prime, Ny A Dy A D, is sufficient.
> |If n > 6, the assumptions Ny, Ny for each d|n, Dy, D> and D3
are sufficient (that is, the non-degeneracy conditions can be
minimized).
> If n > 3, the assumptions Ny, Ny for each din, Dy, D>, ..., DLgJ
are sufficient (a weaker form).
> Non-degeneracy conditions always help to avoid the issues
with complex coordinates.


https://arxiv.org/abs/2412.05190

THANK YOU!
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