Manifold-based Proving Methods in Projective Geometry

Michael Katzenberger and Jürgen Richter-Gebert Technical University of Munich

August 1, 2025

Background

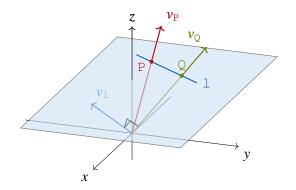
The interest in this topic arrises from 2 recent events:

- Desire to compare paper "Incidences and Tilings" by Sergey Fomin and Pavlo Pylyavskyy with Jürgen Richter-Gebert's methods from 20 years ago
- New implementation of Dynamic Geometry Software "Cinderella" far enough that an automatic prover seems in reach

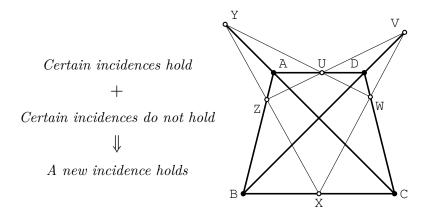
The Setting

Projective plane:

- ▶ Points P and lines 1 represented by homogeneous coordinates in R³
- ▶ P lies on $1 \Leftrightarrow \langle P, 1 \rangle = 0$
- ▶ 3 Points P, Q, R collinear \Leftrightarrow [P, Q, R] := det(P, Q, R) = 0



Projective Incidence Theorems



Not a restriction, as Euclidean properties can be expressed as projective properties

Binomial Proofs

For any $A, B, C, D, E \in \mathbb{R}^3$ the following equation holds (Grassman-Plücker-Relation):

$$[\mathtt{A},\mathtt{B},\mathtt{C}][\mathtt{A},\mathtt{D},\mathtt{E}] - [\mathtt{A},\mathtt{B},\mathtt{D}][\mathtt{A},\mathtt{C},\mathtt{E}] + [\mathtt{A},\mathtt{B},\mathtt{E}][\mathtt{A},\mathtt{C},\mathtt{D}] = 0$$

This means, if $[A, D, E] \neq 0$ gilt:

$$[A, B, C] = 0 \Longleftrightarrow \frac{[A, B, D][A, C, E]}{[A, B, E][A, C, D]} = 1$$

Binomial Proofs

Each collinearity generates a fraction
$$\frac{[A,B,D][A,C,E]}{[A,B,E][A,C,D]} = 1$$

$$+$$

$$All \ appearing \ determinants \ are \ \neq 0$$

$$\downarrow \downarrow$$

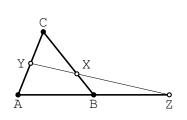
The product of all fractions becomes a fraction of the same form and thus implies a new collinearity

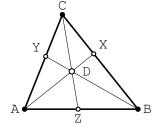
Other properties like 4 points on a circle, 6 points on a conic or orthogonality of lines can also be encoded to similar fractions being equal to one

Binomial Proof for Desargues Theorem

```
[Z, A, U][Z, B, X] = [Z, A, X][Z, B, U]
A, B, Z collinear
                      \Longrightarrow
B, C, X collinear
                      \implies [C, X, Y][B, X, V] = [C, X, V][B, X, Y]
                      \implies [W, C, X][W, D, U] = [W, C, U][W, D, X]
C, D, W collinear
                      \implies [D, U, V][A, U, Y] = [D, U, Y][A, U, V]
D, A, U collinear
                      \implies [B, V, U][D, V, X] = [B, V, X][D, V, U]
B, D, V collinear
U, Z, V collinear
                      \implies [U, V, A][U, Z, B] = [U, V, B][U, Z, A]
                      \implies [X, V, C][X, W, D] = [X, V, D][X, W, C]
X, W, V collinear
                      \implies [A, Y, X][C, Y, U] = [A, Y, U][C, Y, X]
A, C, Y collinear
                      \implies [U, Y, D][U, W, C] = [U, Y, C][U, W, D]
U, W, Y collinear
[X, Y, B][X, Z, A] = [X, Y, A][X, Z, B] \implies X, Y, Z \text{ collinear}
```

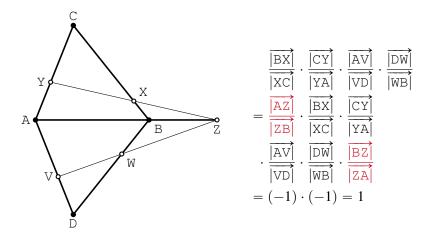
Menelaus' und Ceva's Theorems

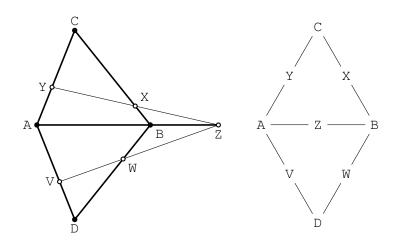


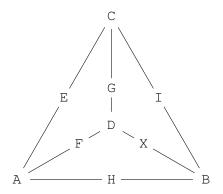


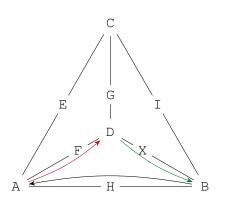
$$\frac{\overrightarrow{|AZ|}}{\overrightarrow{|ZB|}} \cdot \frac{\overrightarrow{|BX|}}{\overrightarrow{|XC|}} \cdot \frac{\overrightarrow{|CY|}}{\overrightarrow{|YA|}} = -1$$

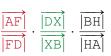
$$\frac{\overrightarrow{|AZ|}}{\overrightarrow{|ZB|}} \cdot \frac{\overrightarrow{|BX|}}{\overrightarrow{|XC|}} \cdot \frac{\overrightarrow{|CY|}}{\overrightarrow{|YA|}} = 1$$

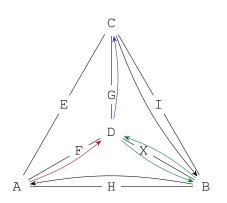




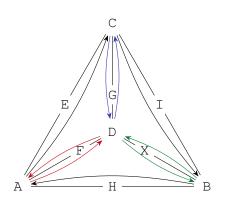


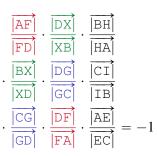


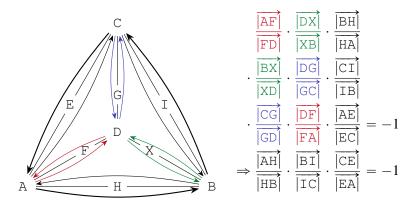




AF	DX	BH
FD	XB	HA
BX	DG	CI
XD	GC	IB







Ceva-Menelaus-Proofs

Triangulation of a closed oriented Surface

+

All triangles except one are Ceva-/Menelaus-triangles

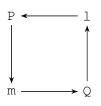
The last triangle must be a Ceva-/Menelaus-triangle

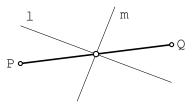
Equivalence to Binomial Proofs

Theorem (Jürgen Richter-Gebert, Susanne Apel, 2009)

Under the assumption of being able to add two generic points, A projective incidence theorem has a Ceva-Menelaus-proof if, and only if, it has a binomial proof.

Proofs using Quadrilateral Tilings (Fomin & Pylyavskyy)





coherent, if
$$\frac{\langle P, 1 \rangle \cdot \langle Q, m \rangle}{\langle P, m \rangle \cdot \langle Q, 1 \rangle} = 1$$

Proofs using Quadrilateral Tilings (Fomin & Pylyavskyy)

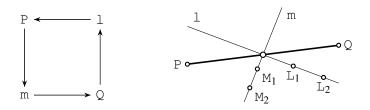
Qudrilateral Tiling of a closed oriented surface

+

All quadrangles but one are coherent

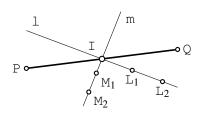
The last quadrangle must be coherent

Relation to Binomial Proofs



$$\frac{\left\langle \texttt{P}, \texttt{1} \right\rangle \cdot \left\langle \texttt{Q}, \texttt{m} \right\rangle}{\left\langle \texttt{P}, \texttt{m} \right\rangle \cdot \left\langle \texttt{Q}, \texttt{1} \right\rangle} = 1 \Longleftrightarrow \frac{\left[\texttt{P}, \texttt{L}_1, \texttt{L}_2\right] \left[\texttt{Q}, \texttt{M}_1, \texttt{M}_2\right]}{\left[\texttt{P}, \texttt{M}_1, \texttt{M}_2\right] \left[\texttt{Q}, \texttt{L}_1, \texttt{L}_2\right]} = 1$$

Relation to Binomial Proofs



$$\begin{split} & \frac{\left[\mathbb{P}, \mathbb{L}_{1}, \mathbb{L}_{2}\right]\left[\mathbb{Q}, \mathbb{M}_{1}, \mathbb{M}_{2}\right]}{\left[\mathbb{P}, \mathbb{M}_{1}, \mathbb{M}_{2}\right]\left[\mathbb{Q}, \mathbb{L}_{1}, \mathbb{L}_{2}\right]} \\ & = \underbrace{\frac{\left[\mathbb{L}_{1}, \mathbb{L}_{2}, \mathbb{P}\right]\left[\mathbb{L}_{1}, \mathbb{I}, \mathbb{Q}\right]}{\left[\mathbb{L}_{1}, \mathbb{L}_{2}, \mathbb{Q}\right]\left[\mathbb{L}_{1}, \mathbb{I}, \mathbb{P}\right]}}_{\text{GPR for } \left[\mathbb{L}_{1}, \mathbb{L}_{2}, \mathbb{I}\right] = 0} \cdot \underbrace{\frac{\left[\mathbb{I}, \mathbb{P}, \mathbb{L}_{1}\right]\left[\mathbb{I}, \mathbb{Q}, \mathbb{M}_{1}\right]}{\left[\mathbb{I}, \mathbb{P}, \mathbb{M}_{1}\right]\left[\mathbb{I}, \mathbb{Q}, \mathbb{L}_{1}\right]}}_{\text{GPR for } \left[\mathbb{I}, \mathbb{P}, \mathbb{Q}\right] = 0} \cdot \underbrace{\frac{\left[\mathbb{M}_{1}, \mathbb{I}, \mathbb{P}\right]\left[\mathbb{M}_{1}, \mathbb{M}_{2}, \mathbb{Q}\right]}{\left[\mathbb{M}_{1}, \mathbb{I}, \mathbb{Q}\right]\left[\mathbb{M}_{1}, \mathbb{M}_{2}, \mathbb{P}\right]}}_{\text{GPR for } \left[\mathbb{M}_{1}, \mathbb{M}_{2}, \mathbb{P}\right] = 0} \end{split}$$

Relation to Binomial Proofs

Theorem

If a projective incidence theorem has a quad proof, then it also has a binomial proof.

Hierarchy of Manifold-Based Proving Methods

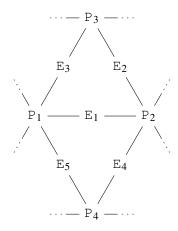
$$B \iff CM$$

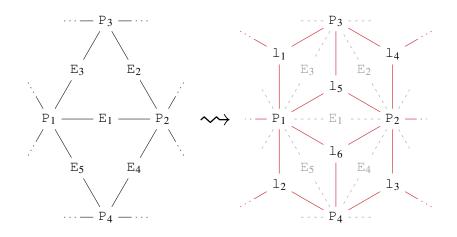
$$\Downarrow \qquad \qquad \Downarrow$$

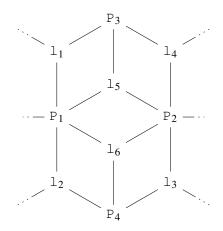
$$F \iff M$$

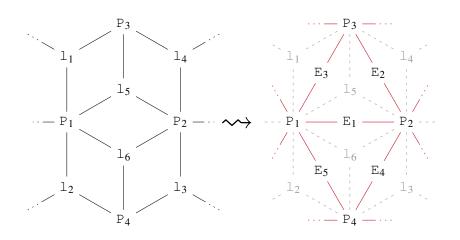
$$\Downarrow$$

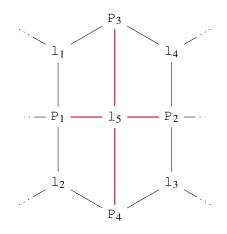
$$C$$

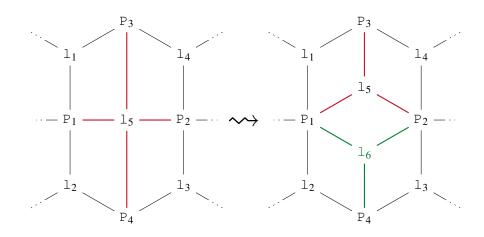








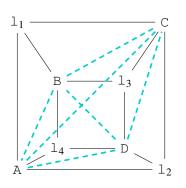


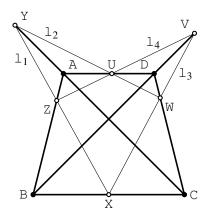


Theorem

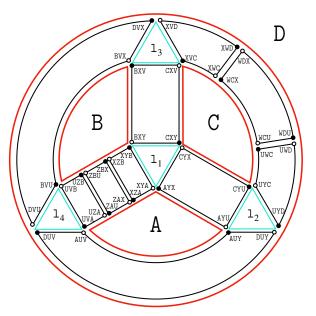
A projective incidence theorem has a quad-proof if, and only if, it also has a Ceva-Menelaus-proof containing only Menelaus-triangles (pure Menelaus-proof).

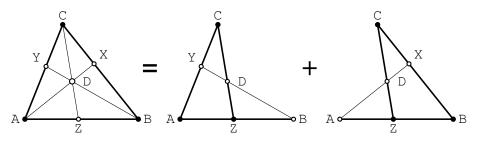
An Illustrative Example

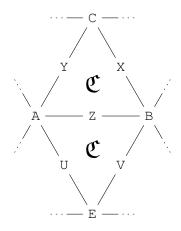


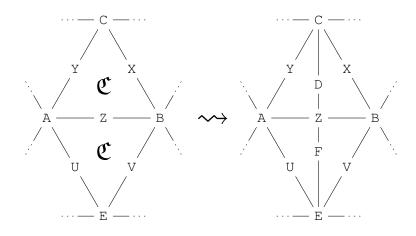


An Illustrative Example









Theorem

Each projective incidence theorem with a Ceva-Menelaus-proof containing exclusively pairwise appearing Ceva-triangles, also has a pure Menelaus-Beweis.

In particular, each projective incidence theorem with a pure Ceva-proof has a pure Menelaus-proof.