Manifold-based Proving Methods
in Projective Geometry

Michael Katzenberger and Jiirgen Richter-Gebert

Technical University of Munich

August 1, 2025



Background

The interest in this topic arrises from 2 recent events:

» Desire to compare paper “Incidences and Tilings” by Sergey
Fomin and Pavlo Pylyavskyy with Jiirgen Richter-Gebert’s
methods from 20 years ago

» New implementation of Dynamic Geometry Software
“Cinderella” far enough that an automatic prover seems in reach



The Setting

Projective plane:

» Points P and lines 1 represented by homogeneous
coordinates in R3

» Pliessonl < (P,1)=0
» 3 Points P, Q, R collinear < [P, Q,R| := det(P,Q,R) = 0
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Projective Incidence Theorems

Certain incidences hold
+

Certain incidences do not hold

J

A new incidence holds

Not a restriction, as Euclidean properties can be expressed as
projective properties



Binomial Proofs

For any A, B, C, D, E € R? the following equation holds
(Grassman-Pliicker-Relation):

[»,B,C][A,D,E] — [A,B,D][A,C,E] + [A,B,E][A,C,D] =0

This means, if [A, D, E] # 0 gilt:

A,B.D
[A,5,C] = 0 = .
A, B. E



Binomial Proofs

A,B,D
Each collinearity generates a fraction [A’ e

+
All appearing determinants are # 0
The product of all fractions becomes a fraction of the same form

and thus implies a new collinearity

Other properties like 4 points on a circle, 6 points on a conic or
orthogonality of lines can also be encoded to similar fractions being
equal to one



Binomial Proof for Desargues Theorem
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[X,Y,A][%,2,B] =

7,B,X] =

[
[B,X,V] =
[
D,U,V][A,U, Y] =

B:

z,A,%X|[2,B,U

]
C,X,V][B, X, Y]

= [w,C, U][w, D, X]
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X,Y, 7 collinear



Menelaus' und Ceva's Theorems
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The Gluing-Process
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The Gluing-Process
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The Gluing-Process
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The Gluing-Process
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The Gluing-Process
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The Gluing-Process
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Ceva-Menelaus-Proofs

Triangulation of a closed oriented Surface
+

All triangles except one are Ceva-/Menelaus-triangles

J

The last triangle must be a Ceva-/Menelaus-triangle



Equivalence to Binomial Proofs

Theorem (Jiirgen Richter-Gebert, Susanne Apel, 2009)

Under the assumption of being able to add two generic points, A
projective incidence theorem has a Ceva-Menelaus-proof if, and only
if, it has a binomial proof.



Proofs using Quadrilateral Tilings (Fomin & Pylyavskyy)
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Proofs using Quadrilateral Tilings (Fomin & Pylyavskyy)

Qudrilateral Tiling of a closed oriented surface
+

All quadrangles but one are coherent

J

The last quadrangle must be coherent



Relation to Binomial Proofs
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Relation to Binomial Proofs

1 m
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[P, L1, L2][Q, My, My ]
[P, M1, M2][Q, L1, L2]

_[L1,Lo,P][Ly, T,0] [I,B Ly][T,0.0] My, T,P][M1, Mp, O

[L1,L2,0][L1, I,P]  [I,B.My][T,0,L4]  [My, I, 0][My, M, P]

GPR for [L;,L,,I]=0 GPR for [1,P,0]=0 GPR for [M;,M,I]=0



Relation to Binomial Proofs

Theorem
If a projective incidence theorem has a quad proof, then it also has a
binomial proof.



Hierarchy of Manifold-Based Proving Methods

B<=CM

U

F=M



Relation to Ceva-Menelaus-Proofs
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Relation to Ceva-Menelaus-Proofs
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Relation to Ceva-Menelaus-Proofs
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Relation to Ceva-Menelaus-Proofs
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Relation to Ceva-Menelaus-Proofs
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Relation to Ceva-Menelaus-Proofs
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Relation to Ceva-Menelaus-Proofs

Theorem

A projective incidence theorem has a quad-proof if, and only if, it also
has a Ceva-Menelaus-proof containing only Menelaus-triangles (pure
Menelaus-proof).



An lllustrative Example
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What about Pure Ceva-Proofs?

Theorem
Each projective incidence theorem with a Ceva-Menelaus-proof

containing exclusively pairwise appearing Ceva-triangles, also has a
pure Menelaus-Bewelis.

In particular, each projective incidence theorem with a pure
Ceva-proof has a pure Menelaus-proof.



