A Generator of Geometry Deductive Database
Method Provers

1

Pedro Quaresmal Nuno Baetal

LUniversity of Coimbra, Portugal (pedro@mat.uc.pt,nmsbaeta@gmail.com)

ADG 2025, 1-2 August, Stuttgart, Germany

1/16

(pedro@mat.uc.pt,nmsbaeta@gmail.com)

A Generator of Geometry Deductive Database Method
Provers

The Geometry Automated-Theorem-Provers (GATP) based on the
deductive database method use a data-based search strategy to improve
the efficiency of forward chaining. An implementation of such a method
is expected to be able to efficiently prove a large set of geometric
conjectures, producing readable proofs [1, 2].

The Provers-Generator for the Geometric Deductive Databases Method
(PG for short), it is a program that, given a set of rules, generates a
prover, an OGP-GDDM-prover,! for that specific set of rules.

The applications in areas such as education are very important given the
possibility, opened by the PG, of having a prover, capable of producing
readable proofs, adapted to a specific audience [3, 4, 5].

!Open Geometry Prover Community Project (OGPcp)
https://github.com /opengeometryprover
2/16

https://github.com/opengeometryprover

Why? — Possible Applications of the PG

A rule based theorem prover: an introduction to proofs in secondary
schools., Teles, J., Santos, V., and Quaresma, P., EPTCS 375:24-37.

The introduction of automated deduction systems in secondary
schools face several bottlenecks. (...) the dissonance between the
outcomes of GATP and the normal practice of conjecturing and
proving in schools is a major barrier to a wider use of such tools in
an educational environment.

Choosing an appropriate set of rules and an automated method
that can use those rules is a major challenge.

3/16

An OGP-GDDM prover

The geometry deductive database method (GDDM) is a synthetic
method that uses forward chaining to prove non-trivial geometry
theorems efficiently [2].

The goals of the OGP-GDDM prover are: to produce a GATP that is
efficient, flexible, with natural language and visual renderings, and
implemented as an open source library [1].

Flexibility means:

» implementing the prover as an open source library, not hard-coded
inside a given program.

» implement the inference rules as SQL data manipulation language
queries.

4/16

An OGP-GDDM prover

Our first implementation uses the set of rules described by Chou et
al. (2000) [2].2 The rules were hard-coded as SQL queries

But. .. we realised [1] that JGEx did not implement the rules stated
in [2].

So:

» a new implementation, for the new set of rules (JGEXx rules),
is needed.

» following the research done in [3, 4, 5] we need many new
implementations, one for each set of rules that best adapt to
many different learning situations . ..

2Chout et al., A deductive database approach to automated geometry
theorem proving and discovering
5/16

The PG

So...instead of “running behind all the set of rules needed”, we

decided to build the Provers-Generator (PG).

The PG is a two-step solution/implementation of the geometric
deductive database method:

> from a given set of rules, generate the code of the

corresponding GDDM prover;

» compile the generated code, to obtain the GDDM prover.

6/16

The PG

To create the prover, a set of inference rules is supplied to PG,
that, in turn, will generate the C++ code necessary to implement
the rules, as well as their usage.

After compiling the generated code, the prover is ready to be used.

Given a conjecture in FOF,3 it will generate the fix-point (the set
of all known and derived facts) and, if the hypothesis belongs to
the fix-point, the conjecture is proved, otherwise, it is unknown.

3To be changed to ADG-Lib
7/16

The PG

OGP-GDDM Prover Generation

Inference PG
Rules/Axioms

OGP-GDDM-Prover

(source code)

Generated Code

(prover.hpp+prover.cpp)

Common Code

; Compilation
OGP-GDDM-Prover

Figure: PG — Generation

Common code: all the source code that is common to all
GDDM-type provers, i.e., the reading and parsing of the files, the
database management, and the global inference mechanism.

8/16

The Generated GDDM Prover

| Compilation
OGP-GDDM Prover Usage '

p

e

) E——— e N

Conjecture H OGP-GDDM-Prover

Fix-Point

Figure: PG — Usage

The generated GATP is, after compilation, a normal GDDM prover
for the specific set of axioms chosen at generation time.

9/16

PG — How to Build a GATP

» Download the PG code:

https://github.com/opengeometryprover/GDDM /tree/master/provers/pg

» Compile the PG code (in provers/pg/src)*: $ make

It will produce the “pg" executable.

» Copy the executable and the axiom set® to a new directory and run
it: $ > ./pg chou.ax

It will will produce the source code for the new GATP
(“proverchou™).

» Compile the “proverchou” code: $ make

It will produce the “proverchou” executable.

*Linux: the tools needed are, make, C++ compiler, Flex and Bison.

®chou.ax is a file containing a set of axioms [2].
10/16

https://github.com/opengeometryprover/GDDM/tree/master/provers/pg

PG — An Example

> An example: In a triangle the base line and the midpoints line

are parallel (geo0007.p):

fof (geo0007,conjecture, ! [A, B, C, D, E]

((midp(D,C,A) & midp(E,A,B)) => para (BCED)))

» $./proverchou geo0007.p

proverchou — PG Generated

Copyright (C) 2025 Nuno Baeta, Pedro Quaresma
Distributed under GNU GPL 3.0 or later
Conjecture is PROVED, in: 0.010058s
Fix—point found, in: 125.494s

Fix—point saved to file 'geo0007.fp " .

» Fix-point (geo0007.fp):

Fix—point
midp (D, C, A)
midp (E, A, B)
midp (D, A, C)
cong(D, C, D, A)
coll (D, C, A)

11/16

Future Work

» To be able to generate a prover as a library < to include the
prover within DGSs and any other program.

» To improve efficiency.
» To output an annotated proof-tree.
» To adopt ADG-Lib format.

» To build appropriate sets of axioms.

12/16

Future Work

» To be able to generate a prover as a library < to include the
prover within DGSs and any other program.

» To improve efficiency.

» To output an annotated proof-tree.
» To adopt ADG-Lib format.

» To build appropriate sets of axioms.

> To explore an implementation using datalog.

13/16

Future Work

» To be able to generate a prover as a library < to include the
prover within DGSs and any other program.

» To improve efficiency.

» To output an annotated proof-tree.
» To adopt ADG-Lib format.

» To build appropriate sets of axioms.

> To explore an implementation using datalog.

Thank You

14/16

Bibliography |

‘ Nuno Baeta and Pedro Quaresma.
Towards a geometry deductive database prover.
Annals of Mathematics and Artificial Intelligence, 91(6):851-863, may
2023.

‘ Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang.

A deductive database approach to automated geometry theorem proving
and discovering.

Journal of Automated Reasoning, 25(3):219-246, 2000.

‘ Pedro Quaresma, Vanda Santos, and Joana Teles.

Proof exploration using dynamic geometry systems with integrated
automated deduction capabilities.

International Journal of Mathematical Education in Science and
Technology, pages 1-25, July 2024.

15/16

Bibliography Il

‘ Vanda Santos, Joana Teles, and Pedro Quaresma.

Exploring quadrilaterals: An interactive task for 7th grade students using
geogebra classroom.

International Journal for Technology in Mathematics Education,
31(3):107-116, September 2024.

‘ Joana Teles, Vanda Santos, and Pedro Quaresma.

A rule based theorem prover: an introduction to proofs in secondary
schools.

Electronic Proceedings in Theoretical Computer Science, 375:24-37, mar
2023.

16/16

