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Section 1

Introduction
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The 2 approaches for Geometry

Synthetic
Developed by Euclid, this approach uses axioms and theorems to prove
“equality” of entities (e.g. congruence and similarity)
There are no “coordinates” in this, no use of numbers

Analytic
Developed in 17th century by Descartes, it brings “coordinates”, and enabled
algebraization of geometry, which revolutionized Geometry significantly
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How Computational Geometry (CG) is done

CG is conventionally done in Analytic fashion (i.e. using coordinates and
numbers)
CG involves both numerical computation and discrete decision making
(combinatorial computation)
A single wrong discrete decision (done using floating point computation)
completely changes the direction of the algorithm

I This causes Robustness issues in CG

Figure: A Fundamental CG Primitive
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A curious question: A Hybrid Approach?

“Can we combine the Analytic approach with a Synthetic approach for
Computational Geometry?”
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Key Motivation for Hybrid Approach: Robust
Computational Geometry

Computational Geometry fails primarily owing to the failures in establishing
“equality”
Synthetic Geometry deals exclusively with notions of “equality” (such as
congruence and similarity). Hence, it is fitting to utilize Synthetic Geometry.
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Prior Attempts at Hybrid or Synthetic Computational
Geometry

Bokowski, J., & Sturmfels, B. (1989). Computational synthetic geometry.
Knuth, D. E. (1992). Axioms and hulls.

I Knuth coined the term “Parsimonious Algorithms” for such hybrid algorithms:
they never numerically compute anything that can be “deduced” from prior
computations

Recent works from Homotopy Type Theory Research, e.g. Synthetic
Differential and Algebraic Geometry

Our work focuses on the “efficacy” analysis of Knuth’s parsimonious algorithms.
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Section 2

Work Overview
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Parsimonous Algorithm Definition

Parsimonious Algorithm
We say that an algorithm is parsimonious if it never makes a test for which the
outcome could have been inferred from the results of previous tests, with respect
to a given set of axioms.
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The Geometric Problem: Order-type Calculation

Our Geometric Problem
Given a set of n points P = {p1, p2, . . . , pn} in 2D, compute its order type
parsimoniously

CounterClockwise (CC) Relation (or Orientation)
For 3-point Orientation Test
pqr is True, if p → q → r is Counter-Clockwise
Can be used for Convex Hulls and many subsequent
computational geometry algorithms

Order Type of Point Set
For a 2D point set, the order type is the mapping from all its ordered triples to
their orientations
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CC Relation Axioms

1 Cyclic Symmetry: pqr ⇒ qrp
2 Anti-symmetry: pqr ⇒ ¬prq
3 Non-degeneracy: pqr ∨ prq
4 Interiority: tqr ∧ ptr ∧ pqt ⇒ pqr
5 Transitivity: tsp ∧ tsq ∧ tsr ∧ tpq ∧ tqr ⇒ tpr

The first three can be captured within a data structure. We wish to do deductions
using (4) and (5). For this work, we focus on (4).

p q

r

t

Figure: Axiom 4 of CC Relation
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A Sample Parsimonious Algorithm

Algorithm 1: Order Type Parsimonious Computation using Axiom-4

Input: Point set P = {p1, p2, . . . , pn}
Output: Set of CC relations
CCRelations ← ∅;
for i ← 1 to n − 2 do

for j ← i + 1 to n − 1 do
for k ← j + 1 to n do

deduced ← DeduceUsingAxiom4(pi , pj , pk ,CCRelations);
if deduced 6= ∅ then

CCRelations ← CCRelations ∪ {deduced};
else

computed ← ComputeCCRelation(pi , pj , pk);
CCRelations ← CCRelations ∪ {computed};

return CCRelations;
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A Sample Parsimonious Algorithm in action

X Parsimonious: a(N)− b(N)− c(N)− d(D)

X Parsimonious: d(N)− a(N)− b(N)− c(N)

× Not Parsimonious: a(N)− b(N)− c(N)− d(N)
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Overview of our Work

We do an “efficacy” analysis of Knuth’s Parsimonious algorithms. That is, we
ask: how many maximum primitives can be “inferred” for a given geometric
problem (as compared to numerically computed)
The geometric problem we choose for this analysis is: order-type calculation
of a random 2D point-set
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Section 3

The Efficacy Analysis
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Efficacy Analysis Definition

Figure: The only 2 configurations for n=4 case

Goal:
Given a parsimonious algorithm, using axiom-4 for inferences, operating on
n-point configurations, we have 2 questions:

1 Which point configurations give rise to the maximum inferences?
2 Which computation sequences achieve that maximum number?

Minimal Configurations are Trivial
When all points on Convex Hull, number of inferences will be 0.
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Fundamental vs Non-fundamental Triples

Fundamental Triple
A fundamental triple is a triple with no points in it. They are represented as ∆0.
They can never be deduced and always have to be numerically computed.

Non-fundamental Triple
A non-fundamental triple is a triple with at least one point in it. They are
represented as ∆i where i ≥ 1. They can always be deduced (we have a theorem
proving this).
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Fundamental Triple ≡ Empty Triangle

For inference using axiom-4, fundamental triples happen to be the same as
empty triangles. For inferences using axiom-5 (and other theorems),
fundamental triple set may not be equivalent to the empty triangle set.
Hence, our current problem is the same as the “Minimum Empty Triangle
Problem”, an Erdős‑type problem in Discrete Geometry research
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A Glance at Problem Complexity

Total Number of All Triangles(m):
(n
3

)
Number of Fundamental Triangles: No known formula
Number of Non-fundamental Triangles:(n
3

)
− Number of Fundamental Triangles

Number of possible sequences for deduction: m!, where
m = Number of all Triangles

For 6 points:
there are C6

3 = 20 triples
number of possible sequences of triple computations:
20! = 2432902008176640000

No. of Points 3 4 5 6 7 8 9 10
No. of Order Types 1 2 3 16 135 3,315 158,817 14,309,547

Table: Order Type Complexity
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The Constructive Approaches

#MaxDeductions =
(

n
3

)
−#FundamentalTriangles (1)

We have to maximize (1). But there is no straight formula for
#FundamentalTriangles, and therefore, neither for (1). So, we suggest 2
constructive approaches to figure out the maximum deduction case:

1 Forward Construction
2 Backward Construction
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Section 4

Efficacy Analysis 1: Extremal Configurations
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Forward Construction

We start with k < n points in plane in non-degenerate position
We add one point in each of the different regions separately, hence
generating new (k + 1)-point configurations
We weed out isomorphic configurations, hence unique configurations remain
Keep doing this till we reach n

Key Idea
Doing such constructions could lead to insights about which “type” of
constructions lead to maximum deductions. We start with k=3 (i.e. an empty
triangle case) and add points one-by-one.
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Forward Construction Examples
We did by hand for 4-point, 5-point, and 6-point cases.

Figure: n=4 results in 2 unique order types

Figure: n=5 results in 3 unique order types
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Forward Construction 6-point Example

Figure: The maximal case for n=6
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Backward Construction

Assume that we have been given the convex hull of a maximal point
configuration of size n.
Connect all points with lines, giving rise to different regions
We add one point in one of these regions and see which region maximizes the
inferrable triples (i.e. minimizes empty triangles)
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Backward Construction Example

Figure: Backward Construction for n=6
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(contd..) Backward Construction Example

Figure: Backward Construction for n=6
Shivam Sharma and John Keyser (TAMU) Inference Maximizing Point Configurations for Parsimonious Algorithms<2025-08-01 Fri> 28 / 37



flow_paper_url.png

Candidates for Inference Maximizing Configuration

Triangle-within-Triangle
configuration
Using the ConvexHull Heuristic

Spiral Point Configuration
We do a forward construction and start
placing points in an outward spiral
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Section 5

Efficacy Analysis 2: Inference Maximizing Sequences
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Problem Complexity

∆0: Fundamental Triples
∆i (i > 0): Non-fundamental Triples with “i” interior points
Trivial Maximal Sequences: ∆0∆0 . . .∆i∆i . . .∆j∆j . . ., such that j > i

I where you first compute all of ∆n before proceeding to ∆n+1

Possible Computation Sequences

T (n) = O
(
(n3)!

)
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Maximal Sequences’ Properties

Theorem-1 [Existence]:
An inference-only path always exists for all non-fundamental triples.

Theorem-2 [Non-Trivial Sequences]
Non-trivial maximal sequences exist.
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Theorem-1 Proof Sketch

Figure: Inductive Step of the Proof
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Section 6

Summary
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Immediate Next Steps

1 Automating Constructions using Order-type Isomorphism
2 Proving the Greedy Property for Constructions
3 Counting Maximal Sequences

I Using hypergraph approach
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Future Work and Extensions

1 Utilizing other axioms and theorems for inference
I Multi-axiom Inference

2 Connecting to Exact and Robust Computation
3 Neural-network Assisted Automated Constructions
4 Getting tighter bounds “minimum empty triangle problem”
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Questions

Questions?
Comments?
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