Different Types of Locus Dependencies in Solving Geometry Construction Problems

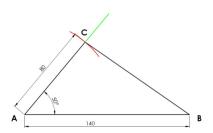
Vesna Marinković, Tijana Šukilović, Filip Marić

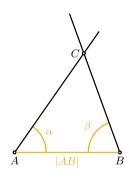
Faculty of Mathematics, University of Belgrade, Serbia

ADG, Stuttgart, 2025

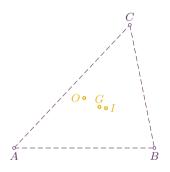
Contents

- Introduction
- 2 New corpus of construction problems
- Solving procedure
- Overview of locus-dependent problems
- 6 Conclusions

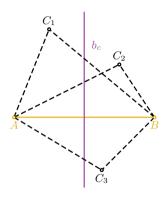

Table of Contents

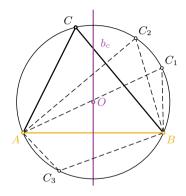

- Introduction
- New corpus of construction problems
- Solving procedure
- 4 Overview of locus-dependent problems
- Conclusions

Geometric construction problems


- Well known mathematical problem with a long history and many practical applications
- Objective: Construct a geometric figure that meet specified constraints
- Different tools can be available we focus on straightedge and compass construction
- Special attention is paid to triangle constructions:

Construct $\triangle ABC$ given |AB|, |AC|, and α




Solvable problem: α , β , |AB|

Unsolvable problem: O (circumcenter), G (centroid), I (incenter)

Redundant problem: A, B, b_c (bisector of |AB|)

Locus dependent (LD) problem: A, B, O (circumcenter)

Automating triangle constructions

- ArgoTriCS system for automated solving of construction problems from the given corpus
- Focused on problems of constructing triangle that meets three given constraints
- Relies on background geometrical knowledge
- Automatically exports textual descriptions of constructions, as well as formal procedures in GCLC and JSON format

Motivation

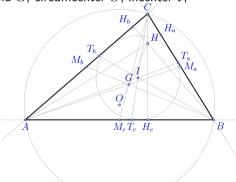
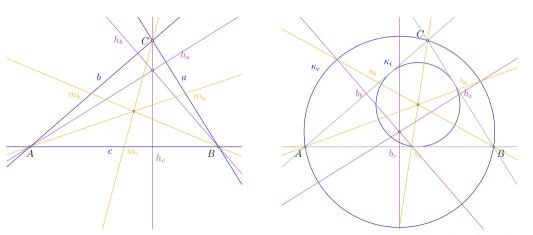

- An emphasis is often, if not exclusively, put on problems known to be solvable
- Underdetermined problems (redundant and locus dependent ones) are rarely discussed
- LD problems play important role in both education, as well as in CAD and robotics
- In this work we focus on adapting ArgoTriCS to identify and solve LD problems
- We propose a new corpus of location construction problems suitable for exploring LD problems
- Dynamic visualization of all considered problems using our ArgoDG library is provided

Table of Contents

- Introduction
- 2 New corpus of construction problems
- Solving procedure
- 4 Overview of locus-dependent problems
- Conclusions

Corpora of construction problems

- Wernick's corpus (1982)
 - \blacksquare vertices A, B, C,
 - side midpoints M_a , M_b , M_c ,
 - feet of altitudes H_a , H_b , H_c ,
 - feet of internal angle bisectors T_a , T_b , T_c .
 - lacktriangledown orthocenter H, centroid G, circumcenter O, incenter I,



Corpora of construction problems

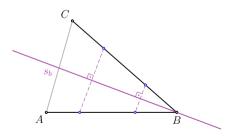
- Wernick's corpus (1982)
- Dual Triangle Construction Problem corpus (2025)
 - triangle sides *a*, *b*, *c*,
 - \blacksquare side bisectors b_a , b_b , b_c ,
 - \blacksquare medians m_a , m_b , m_c ,
 - \blacksquare altitudes h_a , h_b , h_c ,
 - \blacksquare internal angle bisectors s_a , s_b , s_c ,
 - lacksquare circumcircle κ_c and incircle κ_i .

DTCP corpus

• Task: Construct $\triangle ABC$ given locations of three significant lines or circles associated with it

Adding new primitive constructions:

- Adding new primitive constructions:
 - Given a point P and a line l, one can construct a reflection of point P wrt. line l
 - ② Given lines m and l, one can construct a reflection of line m wrt. line l
 - lacktriangle Given a point P and a line l, one can construct a reflection of line l wrt. point P


Adding new primitive constructions:

- Given a point P and a line l, one can construct a reflection of point P wrt. line l
- ② Given lines m and l, one can construct a reflection of line m wrt. line l
- lacktriangle Given a point P and a line l, one can construct a reflection of line l wrt. point P
- ① Given a circle κ and a line l, one can construct two lines that are tangent to κ and perpendicular to l
- lacktriangledown Given a circle κ and its tangent l, one can construct the point at which they touch

Adding new primitive constructions:

- Given a point P and a line l, one can construct a reflection of point P wrt. line l
- ② Given lines m and l, one can construct a reflection of line m wrt. line l
- lacktriangle Given a point P and a line l, one can construct a reflection of line l wrt. point P
- ① Given a circle κ and a line l, one can construct two lines that are tangent to κ and perpendicular to l
- **5** Given a circle κ and its tangent l, one can construct the point at which they touch
- lacktriangledown Given lines p,q,r that form a harmonic set of lines with a line s, one can construct the line s

- Adding new primitive constructions
- Introducing new lemmas:
 - ① The vertex A lies on the reflection of an arbitrary line through the vertex B wrt. the midpoint of the side AB
 - ② The reflection of an arbitrary point on the side BC wrt. the internal angle bisector s_b lies on the side AB

- Add new primitive constructions
- Introducing new lemmas:
 - If for a line l it holds that triangle sides b, c, median m_a and the line l are a harmonic set of lines, i.e. $H(b,c,m_a,l)$, then the line l is parallel to the triangle side a
 - If for a line l it holds that triangle medians m_b , m_c , m_a and the line l are a harmonic set of lines. i.e. $H(m_b, m_c, m_a, l)$, then the line l is parallel to the triangle side a

- Adding new primitive constructions
- Introducing new lemmas
- Prioritize constructions involving lines and circles

- Adding new primitive constructions
- Introducing new lemmas
- Prioritize constructions involving lines and circles
- The search algorithm remains the same

Table of Contents

- Introduction
- New corpus of construction problems
- Solving procedure
- 4 Overview of locus-dependent problems
- Conclusions

- Is the problem redundant, i.e. can one of the given elements be constructed from the remaining two?
 - If yes, choose freely one of the vertices (not yet constructed) and proceed the search in a standard manner
 - If not, go to the next step

- Is the problem redundant, i.e. can one of the given elements be constructed from the remaining two?
- Is the problem locus-dependent, i.e. does one of the given elements belong to some locus of points determined by the other two?
 - If yes, the dependent element is chosen arbitrarily, ensuring that it belongs to the specified locus. The search proceeds in a standard manner
 - If not, go to the next step

- Is the problem redundant, i.e. can one of the given elements be constructed from the remaining two?
- Is the problem locus-dependent, i.e. does one of the given elements belong to some locus of points determined by the other two?
- Oan all three vertices of the triangle be constructed from the given elements?
 - If yes, the search terminates and the problem is considered solvable

- Is the problem redundant, i.e. can one of the given elements be constructed from the remaining two?
- Is the problem locus-dependent, i.e. does one of the given elements belong to some locus of points determined by the other two?
- Oan all three vertices of the triangle be constructed from the given elements?
 - If yes, the search terminates and the problem is considered solvable
 - If not and there are no primitive construction that can be applied, the problem is declared unsolvable using the given knowledge base

Table of Contents

- Introduction
- New corpus of construction problems
- Solving procedure
- 4 Overview of locus-dependent problems
- Conclusions

Locus-dependent problems

- A solution to locus-dependent problem is possible only if specific conditions are met
- One of the given elements must lie on a locus defined by the others, with conditions like
 - two lines must be parallel
 - two lines must be perpendicular
 - point must lie on line/circle
 - center of circle must lie on the line
 - line has to be tangent to the circle, etc.
- These conditions are inferred from the knowledge embedded in ArgoTriCS

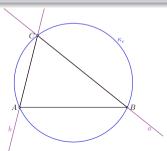
Types of locus-dependent problems

Problem with no solutions:

If the dependent element does not lie on the specified locus, the problem has no solution

Example 1

Construct a triangle ABC given its three altitudes which are not concurrent


Types of locus-dependent problems

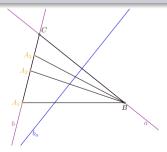
Problem with finitely many solutions:

If the dependent element lies on the specific locus and once appropriately chosen the construction proceeds as though the problem were solvable, the problem has finitely many solutions

Example 2

Construct a triangle ABC given its two sides a and b and circumcircle κ_c which are concurrent

Solution: a, b, κ_c

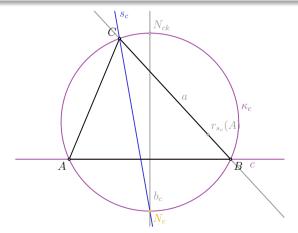

Types of locus-dependent problems

Problem with infinitely many solutions:

If the dependent element lies on the specific locus and once appropriately chosen the solution is not uniquely determined, the problem has infinitely many solutions

Example 3

Construct a triangle ABC given its sides a and b and the side bisector b_a , which is perpendicular to the line a

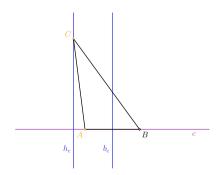


Solution: a, b, b_a

Challenges: Additional objects must be constructed

Example 4

Construct a triangle ABC given its side c, an internal angle bisector s_c , and its circumcircle κ_c

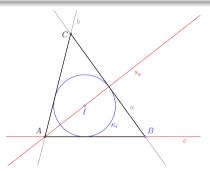


Solution: c, s_c , κ_c

Challenges: Mutual dependency of the objects

Example 5

Construct a triangle ABC given its side c, a side bisector b_c and an altitude h_c



Solution: c, b_c , h_c

Challenges: A construction can start in different ways

Example 6

Construct a triangle ABC given its side c, the internal angle bisector s_a and its incircle κ_i

Solution: c, s_a , κ_i

A construction can start in different ways:

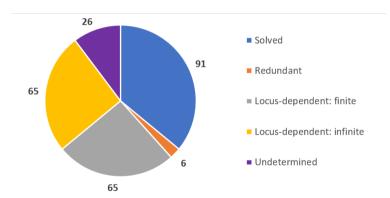
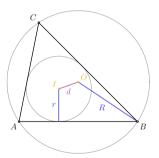

- **①** one can choose freely lines c and s_a and then a circle κ_i tangent to c with center on s_a ;
- ② one can choose freely line c, then choose circle κ_i tangent to c, and afterwards a line s_a that passes through the center of circle κ_i , etc.

Table of Contents

- Introduction
- New corpus of construction problems
- Solving procedure
- 4 Overview of locus-dependent problems
- Conclusions


Performance of ArgoTriCS on DTCP corpus

- Total number of problems: $\binom{17}{3} = 680$, with 253 significantly different
- The proportion of LD problems is considerably higher compared to Wernick's corpus

Conclusions and future work

- Resolve the status of remaining problems
- Handle LD problems requiring arbitrary selection of non-vertex elements (point, line, circle)
- Address the problem of constructing a triangle when its incircle and circumcirle are given

Euler's theorem: $d^2 = R(R - 2r)$

Extend DTCP corpus by additional significant lines and circles

• Thank you for your attention!