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Abstract

We use elementary geometry and elimination to prove some
non-trivial theorems on regular polygons, including regular 5-, 7-
and 9-gons. The required knowledge to follow the proofs does not
go beyond high school knowledge.



Background

“Intelligent algorithms” play a growing role in mathematics
education. Asking AI is already a part of our everyday life. The
obtained answers are, however, not always satisfactory; at least,
they cannot really be reproduced by human verifiable steps.
ADG brings algorithms to mathematics education that are
verifiable. Some of them, of course, are difficult to verify: they may
remain black-box algorithms. Elimination (from algebraic
geometry) may be such an “instrument”. Even though, it can be an
extremely useful instrument to bring automated reasoning to young
learners quite close.
In this talk we use elimination as an instrument in geometric
proofs, in particular in those theorems that deal with regular
polygons. We only use the Pythagorean theorem as background
knowledge.



A possible definition of a regular n-gon
. . .by using algebraic geometric means

Consider the plane R2. Put the first two vertices of a regular n-gon
in (0, 0) and (1, 0), and then set up a minimal polynomial
Cn(x) ∈ Z[x] of cos 2π

n . Now, by setting x2 + y2 = 1 and for the
coordinates (xi , yi) of the regular n-gon,(
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i = 2, 3, . . . , n − 1, we have a set of algebraic equations that
uniquely describe a regular n-gon together with its star-regular
counterparts, as a total of φ(n) cases.



A general issue (unsolvable in algebraic geometry)
Impossible to distinguish between regular and star-regular cases



Other issues

▶ Multiplication of matrices may be a non-trivial concept for
young learners.

▶ The approach also uses a non-trivial formula introduced by
Watkins and Zeitlin (1993) which is based on the Chebyshev
polynomials of the first kind.

Thus, it makes difficult to communicate even simple results based
on regular polygons for a non-expert audience (e.g., for students or
young learners).



Properties of regular polygons
. . .that may be used to find other characterizations

D1 Their sides are of equal length.

D2 Their shortest diagonals are of equal length.

D3 Their second-shortest diagonals are of equal length.

D... . . .

D⌊ n
2 ⌋

Their longest diagonals are of equal length.

Ni The ith point is different from the first point (Pi , P0,
0 ≤ i < n).

Nij The ith and jth points are different (Pi , Pj , 0 ≤ i, j < n).



Some possible characterizations

▶ For n = 3: N1 ∧ D1 (P0 , P1 ∧ |P0P1| = |P1P2| = |P2P0|)
▶ For n = 4: N1 ∧ N2 ∧ D1 ∧ D2 (P0 , P1 ∧ P0 , P2 ∧

|P0P1| = |P1P2| = |P2P3| = |P3P0| ∧ |P0P2| = |P1P3|)
▶ For n = 5: N1 ∧ D1 ∧ D2

▶ For n = 6: N1 ∧ N2 ∧ N3 ∧ D1 ∧ D2 ∧ D3

▶ For n = 7: N1 ∧ D1 ∧ D2



An insufficient (ambiguous) definition
Using GeoGebra as a well-known computer algebra system

For n = 4, N1 ∧ D1 ∧ D2 is
insufficient.
Adding N2 makes the definition
unambiguous.



A possible definition of “regular polygons” in school
. . .by using basic algebraic geometry (only the Pythagorean theorem)

Let n ≥ 3, the points A0, A1, . . ., An−1 (elements of R2) and the
assumptions
▶ Nk for each 1 ≤ k < n,
▶ D1,
▶ D2,
▶ . . .,
▶ D⌊ n

2 ⌋

given. Then, we say, A0A1 . . .An−1 form a regular (star) n-gon.

Sometimes, we may leave certain assumptions, since some of
them are usually unnecessary.
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Ratio of a diagonal and a side in a regular pentagon
We drop N2, N3, N4: they are unnecessary

0>> n:=5

1>> X:=[0,1,x2,x3,x4]

2>> Y:=[0,0,y2,y3,y4] // Assume N1

3>> p:=[undef]

4>> sqdist(i,j):=(X[j]-X[i])ˆ2+(Y[j]-Y[i])ˆ2

5>> l:=0

6>> for(j=1;j<n;j++) {for(k=1;k<=n/2;k++,l++)

{p[l]:=sqdist(j,irem(j+k,n))-sqdist(0,k)}}↪→

[(x2-1)ˆ2+y2ˆ2-1,(x3-1)ˆ2+y3ˆ2-x2ˆ2-y2ˆ2,(x3-x2)ˆ2+(y3-y2)ˆ2-1,

(x4-x2)ˆ2+(y4-y2)ˆ2-x2ˆ2-y2ˆ2,(x4-x3)ˆ2+(y4-y3)ˆ2-1,

(-x3)ˆ2+(-y3)ˆ2-x2ˆ2-y2ˆ2,(-x4)ˆ2+(-y4)ˆ2-1,

(1-x4)ˆ2+(-y4)ˆ2-x2ˆ2-y2ˆ2]

↪→

↪→

↪→

7>> el1:=eliminate(concat(p,dˆ2-x2ˆ2-y2ˆ2),[x2,y2,x3,y3,x4,y4])

[-dˆ4+3*dˆ2-1]

8>> solve(el1,d)

list[1/2*(-sqrt(5)-1),1/2*(-sqrt(5)+1),1/2*(sqrt(5)-1),1/2*(sqrt(5)+1)]

The same code in GeoGebra is longer (but it is possible to
implement the same content).



A regular heptagon: exact coordinates
We drop N2, N3, N4, N5, N6: they are unnecessary

0>> n:=7

1>> X:=[0,1,x2,x3,x4,x5,x6]

2>> Y:=[0,0,y2,y3,y4,y5,y6]

3>> p:=[undef]

4>> sqdist(i,j):=(X[j]-X[i])ˆ2+(Y[j]-Y[i])ˆ2

5>> l:=0

6>> for(j=1;j<n;j++) {for(k=1;k<=n/2;k++,l++) {p[l]:=sqdist(j,irem(j+k,n))-sqdist(0,k)}}

[(x2-1)ˆ2+y2ˆ2-1,(x3-1)ˆ2+y3ˆ2-x2ˆ2-y2ˆ2,(x4-1)ˆ2+y4ˆ2-x3ˆ2-y3ˆ2,

(x3-x2)ˆ2+(y3-y2)ˆ2-1,(x4-x2)ˆ2+(y4-y2)ˆ2-x2ˆ2-y2ˆ2,

(x5-x2)ˆ2+(y5-y2)ˆ2-x3ˆ2-y3ˆ2,(x4-x3)ˆ2+(y4-y3)ˆ2-1,

(x5-x3)ˆ2+(y5-y3)ˆ2-x2ˆ2-y2ˆ2,(x6-x3)ˆ2+(y6-y3)ˆ2-x3ˆ2-y3ˆ2,

(x5-x4)ˆ2+(y5-y4)ˆ2-1,(x6-x4)ˆ2+(y6-y4)ˆ2-x2ˆ2-y2ˆ2,

(-x4)ˆ2+(-y4)ˆ2-x3ˆ2-y3ˆ2,(x6-x5)ˆ2+(y6-y5)ˆ2-1,(-x5)ˆ2+(-y5)ˆ2-x2ˆ2-y2ˆ2,

(1-x5)ˆ2+(-y5)ˆ2-x3ˆ2-y3ˆ2,(-x6)ˆ2+(-y6)ˆ2-1,(1-x6)ˆ2+(-y6)ˆ2-x2ˆ2-y2ˆ2,

(x2-x6)ˆ2+(y2-y6)ˆ2-x3ˆ2-y3ˆ2]

↪→
↪→
↪→
↪→
↪→
↪→
↪→
7>> el1:=eliminate(p,[y2,x3,y3,x4,y4,x5,y5,x6,y6])

[-x2ˆ3+5/2*x2ˆ2-3/2*x2+1/8]

8>> fsolve(el1,[x2])

[[0.777479066044],[1.62348980186],[0.0990311320976]]

Note: A regular heptagon cannot be constructed via straightedge
and compass (that is, with Euclidean means). The obtained
polynomial in x2 is an irreducible cubic.



Recalling {7}, {7/2} and {7/3}
The reason behind there are multiple solutions



A regular nonagon: Karst’s theorem

Given a regular nonagon, let MAB be the midpoint of one side, XBC

be the mid-arc point of the arc connecting an adjacent side, and
MOX the midpoint of OXBC . Then, amazingly, ∠OMABMOX = 30◦.



A regular nonagon: Karst’s theorem
We use N1 ∧ N3 ∧ D1 ∧ D2 ∧ D3 ∧ D4 (D4 may be removed)

0>> n:=9

1>> X:=[0,1,x2,x3,x4,x5,x6,x7,x8,ox,mabx,xbcx,moxx]

2>> Y:=[0,0,y2,y3,y4,y5,y6,y7,y8,oy,maby,xbcy,moxy] // N1

3>> p:=[undef]

4>> sqdist(i,j):=(X[j]-X[i])ˆ2+(Y[j]-Y[i])ˆ2

5>> sprod(i,j,k):=(X[j]-X[i])*(X[j]-X[k])+(Y[j]-Y[i])*(Y[j]-Y[k])

6>> midpx(i,j,k):=X[i]-(X[j]+X[k])/2

7>> midpy(i,j,k):=Y[i]-(Y[j]+Y[k])/2

8>> l:=0

9>> for(j=1;j<n;j++) {for(k=1; k<n/2; k++, l++) {p[l]:=sqdist(j,irem(j+k,n))-sqdist(0,k) }}

10>> p[l]:=sqdist(0,3)*t-1 // N3

11>> q:=[undef]

12>> q[0]:=sqdist(0,9)-sqdist(1,9)

13>> q[1]:=sqdist(1,9)-sqdist(2,9)

14>> q[2]:=midpx(10,0,1)

15>> q[3]:=midpy(10,0,1)

16>> q[4]:=sqdist(11,1)-sqdist(11,2)

17>> q[5]:=sqdist(11,9)-sqdist(0,9)

18>> q[6]:=midpx(12,0,11)

19>> q[7]:=midpy(12,0,11)

20>> q[8]:=(sprod(9,10,12))ˆ2-cc*sqdist(9,10)*sqdist(10,12)

21>> el1:=eliminate(p,[y2,x3,y3,x4,y4,x5,y5,x6,y6,x7,y7,x8,y8,t])

[-x2ˆ3+3*x2ˆ2-9/4*x2+1/8]

22>> el2:=eliminate(concat(p,q),[x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,x7,y7,

x8,y8,xbcx,xbcy,ox,oy,mabx,maby,moxx,moxy,t])↪→
[-ccˆ2+cc-3/16]

23>> fa2:=factor(el2)

[-(4*cc-3)*(4*cc-1)/16]

24>> csolve(fa2,cc)

list[1/4,3/4]



Report on classroom uses

The suggested approach was partially tried in a teacher training
course at the author’s institute in the winter semester of 2024/2025
among two groups of students (altogether 30 prospective
mathematics teachers), with a good success. After the lecturer’s
explanation, many of the students managed to find the appropriate
equations with GeoGebra and they found the coordinates of all
searched vertices in a regular pentagon, most of them with no help
or after just a few further advices.



Report on classroom uses



Report on classroom uses



Acknowledgments

Many thanks to Bernard Parisse for his continuous help in
fine-tuning Giac to get the required results the best way. Also, the
author thanks Tomás Recio for his advices regarding to an early
version of this contribution.

Grateful thanks to the Research Institute of Symbolic Computation
(RISC) in Hagenberg, Austria, for sponsoring the author in
participation at ADG 2025.



THANK YOU!



References I
G. Gévay, B. Kovács, and Z. Kovács.
Is a regular polygon determined by its diagonals?, May 2025.
Extended abstract, submission to ADG 2025.

F. Ghourabi, T. Ida, and K. Takahashi.
Logical and algebraic views of a knot fold of a regular heptagon.
In Proceedings of the International Symposium on Symbolic Computation in Software
Science (SCSS2013), Ser. EPiC Series, volume 15, 06 2013.

Z. Kovács.
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